Alekseyenko Alexander V, Lee Christopher J, Suchard Marc A
Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
Syst Biol. 2008 Oct;57(5):772-84. doi: 10.1080/10635150802434394.
New contributions toward generalizing evolutionary models expand greatly our ability to analyze complex evolutionary characters and advance phylogeny reconstruction. In this article, we extend the binary stochastic Dollo model to allow for multi-state characters. In doing so, we align previously incompatible Wagner and Dollo parsimony principles under a common probabilistic framework by embedding arbitrary continuous-time Markov chains into the binary stochastic Dollo model. This approach enables us to analyze character traits that exhibit both Dollo and Wagner characteristics throughout their evolutionary histories. Utilizing Bayesian inference, we apply our novel model to analyze intron conservation patterns and the evolution of alternatively spliced exons. The generalized framework we develop demonstrates potential in distinguishing between phylogenetic hypotheses and providing robust estimates of evolutionary rates. Moreover, for the two applications analyzed here, our framework is the first to provide an adequate stochastic process for the data. We discuss possible extensions to the framework from both theoretical and applied perspectives.
对进化模型进行泛化的新贡献极大地扩展了我们分析复杂进化特征和推进系统发育重建的能力。在本文中,我们将二元随机多洛模型进行扩展,以允许处理多状态特征。通过将任意连续时间马尔可夫链嵌入二元随机多洛模型,我们在一个共同的概率框架下协调了先前不兼容的瓦格纳和多洛简约原则。这种方法使我们能够分析在整个进化历史中表现出多洛和瓦格纳特征的性状。利用贝叶斯推断,我们应用新模型分析内含子保守模式和可变剪接外显子的进化。我们开发的广义框架在区分系统发育假设和提供进化速率的稳健估计方面显示出潜力。此外,对于这里分析的两个应用,我们的框架是第一个为数据提供适当随机过程的框架。我们从理论和应用的角度讨论了该框架可能的扩展。