Suppr超能文献

16排和64排多层螺旋CT神经成像协议中晶状体剂量的比较:尽可能降低剂量。

Comparison of eye lens dose on neuroimaging protocols between 16- and 64-section multidetector CT: achieving the lowest possible dose.

作者信息

Tan J S P, Tan K-L, Lee J C L, Wan C-M, Leong J-L, Chan L-L

机构信息

Department of Diagnostic Radiology, Singapore General Hospital, Singapore.

出版信息

AJNR Am J Neuroradiol. 2009 Feb;30(2):373-7. doi: 10.3174/ajnr.A1327. Epub 2008 Oct 14.

Abstract

BACKGROUND AND PURPOSE

To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols.

MATERIALS AND METHODS

Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05.

RESULTS

The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens.

CONCLUSIONS

Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.

摘要

背景与目的

据我们所知,尚无研究比较16层和64层多探测器CT(MDCT)在标准临床神经成像协议下对晶状体的辐射剂量。我们的目的是通过使用近乎相同的神经成像协议,评估同一制造商生产的16层和64层MDCT之间的辐射剂量差异。

材料与方法

使用标准神经成像CT协议,在16层和64层MDCT上对三个尸体头部进行扫描。使用热释光剂量计(TLD)测量晶状体剂量,并且每次扫描重复进行以减少随机误差。通过配对学生t检验,对每种成像协议的剂量长度乘积、容积CT剂量指数(CTDI(vol))和TLD读数进行平均,并在扫描仪和协议之间进行比较。统计学显著性定义为P < .05。

结果

对于近乎相同的成像协议,64层MDCT的辐射剂量和晶状体剂量降低了28.1%-45.7%(P < .000)。在16层MDCT上,与CT脑扫描的非倾斜螺旋模式相比,倾斜轴向模式下晶状体剂量降低最大(81.1%)。在所研究的协议中,颞骨CT对晶状体的辐射剂量最大。

结论

64层MDCT的晶状体辐射剂量显著更低,部分原因是自动管电流调制技术的改进。然而,在适用的情况下,通过重新定位头部或倾斜机架来保护眼睛免受辐射束照射仍然是降低晶状体剂量的最佳方法。

相似文献

2
Radiation dose to the lens using different temporal bone CT scanning protocols.
AJNR Am J Neuroradiol. 2010 Feb;31(2):226-9. doi: 10.3174/ajnr.A1807. Epub 2009 Nov 5.
3
Peak skin and eye lens radiation dose from brain perfusion CT based on Monte Carlo simulation.
AJR Am J Roentgenol. 2012 Feb;198(2):412-7. doi: 10.2214/AJR.11.7230.
5
Peak skin and eye lens radiation dose from brain perfusion CT: CTDI and Monte Carlo based estimations.
Eur J Radiol. 2020 May;126:108950. doi: 10.1016/j.ejrad.2020.108950. Epub 2020 Mar 10.
8
Comparison of radiation doses between cone beam CT and multi detector CT: TLD measurements.
Radiat Prot Dosimetry. 2008;132(3):339-45. doi: 10.1093/rpd/ncn305. Epub 2008 Dec 13.
9
Effective dose to patient measurements for flat-detector computed tomography protocols in acute stroke care.
Eur Radiol. 2020 Sep;30(9):5082-5088. doi: 10.1007/s00330-020-06891-w. Epub 2020 Apr 28.

引用本文的文献

1
Tradeoffs between Radiation Exposure to the Lens of the Eyes and Diagnostic Image Quality in Pediatric Brain Computed Tomography.
J Med Signals Sens. 2023 Jul 12;13(3):208-216. doi: 10.4103/jmss.jmss_19_22. eCollection 2023 Jul-Sep.
2
MRI-based radiotherapy planning method using rigid image registration technique combined with outer body correction scheme: a feasibility study.
Oncotarget. 2017 May 7;8(33):54497-54505. doi: 10.18632/oncotarget.17672. eCollection 2017 Aug 15.
6
Data analysis of low dose multislice helical CT scan in orbital trauma.
Int J Ophthalmol. 2012;5(3):366-9. doi: 10.3980/j.issn.2222-3959.2012.03.22. Epub 2012 Jun 18.
7
Multicentre imaging measurements for oncology and in the brain.
Br J Radiol. 2011 Dec;84 Spec No 2(Spec Iss 2):S213-26. doi: 10.1259/bjr/74316620.

本文引用的文献

1
Cancer risks from diagnostic radiology.
Br J Radiol. 2008 May;81(965):362-78. doi: 10.1259/bjr/01948454.
2
Computed tomography--an increasing source of radiation exposure.
N Engl J Med. 2007 Nov 29;357(22):2277-84. doi: 10.1056/NEJMra072149.
3
American College of Radiology white paper on radiation dose in medicine.
J Am Coll Radiol. 2007 May;4(5):272-84. doi: 10.1016/j.jacr.2007.03.002.
4
Dose performance of a 64-channel dual-source CT scanner.
Radiology. 2007 Jun;243(3):775-84. doi: 10.1148/radiol.2433061165. Epub 2007 Apr 19.
5
Comparison of MDCT radiation dose: a phantom study.
AJR Am J Roentgenol. 2006 Nov;187(5):W498-502. doi: 10.2214/AJR.05.1491.
6
Dose reduction and image quality in MDCT colonography using tube current modulation.
AJR Am J Roentgenol. 2006 Sep;187(3):695-701. doi: 10.2214/AJR.05.0662.
9
Techniques and applications of automatic tube current modulation for CT.
Radiology. 2004 Dec;233(3):649-57. doi: 10.1148/radiol.2333031150. Epub 2004 Oct 21.
10
Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries.
Lancet. 2004 Jan 31;363(9406):345-51. doi: 10.1016/S0140-6736(04)15433-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验