Kwak Kyungwon, Rosenfeld Daniel E, Chung Jean K, Fayer Michael D
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
J Phys Chem B. 2008 Nov 6;112(44):13906-15. doi: 10.1021/jp806035w. Epub 2008 Oct 15.
Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.
C-H与各种氢键受体之间形成的氢键在蛋白质和有机晶体结构以及C-H键裂解反应机制中发挥着重要作用。氯仿作为一种C-H氢键供体,能与丙酮和二甲基亚砜(DMSO)形成弱氢键复合物。当氯仿溶解在由丙酮和DMSO组成的混合溶剂中时,两种类型的氢键复合物都存在。氯仿 - 丙酮和氯仿 - DMSO这两种复合物处于平衡状态,它们通过氯仿交换氢键受体而迅速相互转化。这种快速的氢键受体取代反应通过超快二维红外(2D-IR)振动回波化学交换光谱进行探测。实验中使用氘代氯仿,并测量C-D伸缩模式的2D-IR光谱。通过观察2D-IR光谱中非对角峰随时间的增长来追踪氯仿氢键伙伴的化学交换。对于氯仿 - DMSO复合物中丙酮分子取代DMSO分子的情况,测得的取代速率为1/30 ps,对于氯仿 - 丙酮复合物中DMSO分子取代丙酮分子的情况,取代速率为1/45 ps。混合溶剂中存在游离氯仿,它在取代反应中充当反应中间体,类似于SN1型反应。根据测得的速率以及丙酮和DMSO的平衡浓度,发现氯仿 - DMSO和氯仿 - 丙酮复合物的解离速率分别为1/24 ps和1/5.5 ps。完全取代反应的测量速率与复合物解离速率之间的差异对应于扩散限制速率。估计的扩散限制速率与扩散反应的Smoluchowski处理结果吻合良好。