Suppr超能文献

利用超快二维红外(2D IR)振动回声光谱研究盐溶液中的水动力学。

Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

Acc Chem Res. 2009 Sep 15;42(9):1210-9. doi: 10.1021/ar900043h.

Abstract

Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it with another pulse, the local oscillator. Heterodyne detection provides phase and amplitude information, which are both necessary to perform the two Fourier transforms that take the data from the time domain to a two-dimensional frequency domain spectrum. The time dependence of a series of 2D IR vibrational echo spectra provides direct information on system dynamics. Here, we use two types of 2D IR vibrational echo experiments to examine the influence that charged species have on water hydrogen-bond dynamics. Solutions of NaBr and NaBF(4) are studied. The NaBr solutions are studied as a function of the concentration using vibrational echo measurements of spectral diffusion and polarization-selective IR pump-probe measurements of orientational relaxation. Both types of measurements show the slowing of hydrogen-bond network structural evolution with an increasing salt concentration. NaBF(4) is studied using vibrational echo chemical-exchange spectroscopy. In these experiments, it is possible to directly observe the chemical exchange of water molecules switching their hydrogen-bond partners between BF(4)(-) and other water molecules. The results demonstrate that water interacting with ions has slower hydrogen-bond dynamics than pure water, but the slowing is a factor of 3 or 4 rather than orders of magnitude.

摘要

水在自然界中无处不在,但它很少以纯水的形式存在。从海洋到生物学,水分子与各种各样的溶解物质相互作用。这些物质中有许多是带电的。在海洋中,水与溶解盐相互作用。在生物系统中,水与溶解盐以及带电荷的氨基酸、膜的两性离子头基以及携带电荷的其他生物基团相互作用。由于其动态氢键网络,水在大量的化学反应中起着核心作用。一个水分子可以在大约四面体的排列中形成多达四个氢键。这些氢键在不断地被打破,新的氢键在皮秒时间尺度上形成。水的氢键网络快速重新配置的能力使水能够适应和促进化学反应。因此,带电物质对水氢键动力学的影响很重要。超快相干红外光谱学的最新进展极大地扩展了我们对水动力学的理解。二维红外(2D IR)振动回声光谱学提供了新的可观测量,这些可观测量直接提供了在热平衡条件下分子在其基态下快速动力学的信息。2D IR 振动回波类似于二维核磁共振(NMR),但在时间尺度上要短几个数量级。在 2D IR 振动回波实验中(见图概述),三个 IR 脉冲调谐到感兴趣的振动频率,在这种情况下,是水的羟基伸缩模式的频率。前两个脉冲通过其振动频率“标记”初始分子结构。脉冲二和三之间系统演变,第三个脉冲刺激振动回波脉冲的发射,这就是信号。振动回波脉冲是外差探测,通过将其与另一个脉冲(本地振荡器)组合来检测。外差探测提供相位和幅度信息,这两者都是将数据从时域转换到二维频域谱所必需的。一系列 2D IR 振动回波光谱的时间依赖性提供了系统动力学的直接信息。在这里,我们使用两种类型的 2D IR 振动回波实验来研究带电物质对水氢键动力学的影响。研究了 NaBr 和 NaBF(4)的溶液。使用振动回波光谱扩散测量和偏振选择红外泵浦探测取向弛豫测量,研究了 NaBr 溶液随浓度的变化。这两种类型的测量都表明,随着盐浓度的增加,氢键网络结构演化的速度减慢。使用振动回波化学交换光谱学研究了 NaBF(4)。在这些实验中,可以直接观察到水分子与离子相互作用时,水分子与其氢键供体或受体之间的氢键交换,其氢供体或受体在 BF(4)(-)和其他水分子之间切换。结果表明,与离子相互作用的水的氢键动力学比纯水慢,但慢了 3 或 4 倍,而不是数量级。

相似文献

2
Water dynamics--the effects of ions and nanoconfinement.水动力学——离子与纳米限域效应
J Phys Chem B. 2008 May 1;112(17):5279-90. doi: 10.1021/jp7121856. Epub 2008 Mar 28.
8
Hydrogen bond dynamics in aqueous NaBr solutions.溴化钠水溶液中的氢键动力学
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16731-8. doi: 10.1073/pnas.0707824104. Epub 2007 Oct 11.

引用本文的文献

本文引用的文献

2
On the molecular mechanism of water reorientation.关于水重新定向的分子机制。
J Phys Chem B. 2008 Nov 13;112(45):14230-42. doi: 10.1021/jp805217u. Epub 2008 Oct 23.
5
Direct observation of fast protein conformational switching.快速蛋白质构象转换的直接观察。
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8619-24. doi: 10.1073/pnas.0803764105. Epub 2008 Jun 18.
8
Water inertial reorientation: hydrogen bond strength and the angular potential.水的惯性重排:氢键强度与角势
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5295-300. doi: 10.1073/pnas.0801554105. Epub 2008 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验