Suppr超能文献

运用神经网络分析根据重症监护病房患者咪达唑仑镇静深度对脑电图模式进行分类。

Use of neural network analysis to classify electroencephalographic patterns against depth of midazolam sedation in intensive care unit patients.

作者信息

Veselis R A, Reinsel R, Sommer S, Carlon G

机构信息

Department of Anesthesiology, Memorial Sloan Kettering, New York, NY 10021.

出版信息

J Clin Monit. 1991 Jul;7(3):259-67. doi: 10.1007/BF01619271.

Abstract

The electroencephalographic (EEG) analog signal is complex and cannot easily be described by univariate variables. Clear visual changes in the EEG power spectrum can be present with little or no change in univariate variable values. A method that could produce a single value based on the total data available in the EEG power spectrum would be very useful in monitoring EEG changes. Neural network analysis is a technique that can take multiple inputs and produce a single output value using complicated processing patterns that require training to establish. We examined the usefulness of a series of neural network models to classify 63 EEG patterns against sedation level in 26 mechanically ventilated patients requiring midazolam for long-term sedation. During a stable period of sedation, a 4- to 60-minute period of EEG data was obtained concurrently with a sedation level from 1 (follows commands) to 7 (no or gag response to suctioning of the endotracheal tube). The EEG power spectrum was divided into equal frequency bands, and the log absolute powers in each of these bands were used as inputs for a series of neural network models. The output target was the sedation level associated with each set of EEG data. Networks were trained on a subset of EEG power/sedation score data pairs, and the ability to classify the remaining data pairs was tested. Using a t-test comparison with a random set of sedation levels, we found that trained neural network models classified EEG patterns against sedation level successfully (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

脑电图(EEG)模拟信号很复杂,难以用单变量进行简单描述。脑电图功率谱中可能会出现明显的视觉变化,而单变量值变化很小或没有变化。一种能够根据脑电图功率谱中的全部可用数据生成单个值的方法,在监测脑电图变化方面将非常有用。神经网络分析是一种可以接受多个输入,并使用需要训练来建立的复杂处理模式产生单个输出值的技术。我们研究了一系列神经网络模型对26例需要咪达唑仑进行长期镇静的机械通气患者的63种脑电图模式进行镇静水平分类的有效性。在镇静稳定期,同时获取4至60分钟的脑电图数据以及从1级(听从指令)到7级(对气管内插管吸引无反应或有呛咳反应)的镇静水平。脑电图功率谱被划分为等频带,每个频带中的对数绝对功率用作一系列神经网络模型的输入。输出目标是与每组脑电图数据相关的镇静水平。网络在脑电图功率/镇静评分数据对的一个子集上进行训练,并测试对其余数据对进行分类的能力。通过与一组随机的镇静水平进行t检验比较,我们发现经过训练的神经网络模型能够成功地根据镇静水平对脑电图模式进行分类(p小于0.001)。(摘要截短至250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验