Suppr超能文献

区分相似脑电图谱的分析方法:神经网络与判别分析。

Analytical methods to differentiate similar electroencephalographic spectra: neural network and discriminant analysis.

作者信息

Veselis R A, Reinsel R, Wronski M

机构信息

Department of Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.

出版信息

J Clin Monit. 1993 Sep;9(4):257-67. doi: 10.1007/BF02886696.

Abstract

Differences in electroencephalographic (EEG) power spectra obtained under similar, but not identical, conditions may be difficult to discern using standard techniques. Statistical analysis may not be useful because of the large number of comparisons necessary. Visual recognition of differences also may be difficult. A new technique, neural network analysis, has been used successfully in other problems of pattern recognition and classification. We examined a number of methods of classifying similar EEG data: standard statistical analysis (analysis of variance), visual recognition, discriminant analysis, and neural network analysis. Twenty-nine volunteers received either thiopental (n = 9), midazolam (n = 10), or propofol (n = 10) in sedative doses in 3 different studies. These drugs produced very similar changes in the EEG power spectra. Except for beta 2 power during thiopental infusion, differences between drugs could not be detected using analysis of variance. Visual categorization was correct in 72% of the baseline EEGs, 70% of thiopental EEGs, 27% of propofol EEGs, and 46% of midazolam EEGs. A classification neural network (Learning Vector Quantization network) containing a Kohonen hidden layer was able to successfully classify 57 of 58 EEG samples (of 4 minutes' duration). Discriminant analysis had a similar rate of success. This level of performance was achieved by dividing the EEG power spectrum from 1 to 30 Hz into 15 2-Hz bandwidths. When the EEG power spectrum was divided into the "classical" frequency bandwidths (alpha, beta 1, beta 2, theta, delta), both neural network and discriminant analysis performance deteriorated. By training the network using only certain inputs we were able to identify drug-specific bandwidths that seemed to be important in correct classification. We conclude that propofol, thiopental, and midazolam produce different effects on the EEG and that both neural network and discriminant analysis are useful in identifying these differences. We also conclude that EEG spectra should be analyzed without using classical EEG bands (alpha, beta, etc.). Additionally, neural networks can be used to identify frequency bands that are "important" in specific drug effects on the EEG. Once a classification algorithm is obtained using either a neural network or discriminant analysis, it could be used as an on-line monitor to recognize drug-specific EEG patterns.

摘要

在相似但不完全相同的条件下获得的脑电图(EEG)功率谱差异,使用标准技术可能难以辨别。由于需要进行大量比较,统计分析可能无用。视觉识别差异也可能困难。一种新技术,即神经网络分析,已在其他模式识别和分类问题中成功应用。我们研究了多种对相似EEG数据进行分类的方法:标准统计分析(方差分析)、视觉识别、判别分析和神经网络分析。在3项不同研究中,29名志愿者接受了镇静剂量的硫喷妥钠(n = 9)、咪达唑仑(n = 10)或丙泊酚(n = 10)。这些药物在EEG功率谱上产生了非常相似的变化。除了硫喷妥钠输注期间的β2功率外,使用方差分析无法检测到药物之间的差异。视觉分类在72%的基线EEG、70%的硫喷妥钠EEG、27%的丙泊酚EEG和46%的咪达唑仑EEG中是正确的。一个包含Kohonen隐藏层的分类神经网络(学习向量量化网络)能够成功地对58个4分钟时长的EEG样本中的57个进行分类。判别分析的成功率相似。通过将1至30Hz的EEG功率谱划分为15个2Hz带宽实现了这种性能水平。当EEG功率谱被划分为“经典”频率带宽(α、β1、β2、θ、δ)时,神经网络和判别分析的性能都会下降。通过仅使用某些输入来训练网络,我们能够识别出在正确分类中似乎很重要的药物特异性带宽。我们得出结论,丙泊酚、硫喷妥钠和咪达唑仑对EEG产生不同影响,并且神经网络和判别分析在识别这些差异方面都很有用。我们还得出结论,EEG频谱分析不应使用经典EEG频段(α、β等)。此外,神经网络可用于识别在特定药物对EEG的影响中“重要”的频段。一旦使用神经网络或判别分析获得分类算法,它可作为在线监测器来识别药物特异性EEG模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验