Suppr超能文献

长时间骑行运动中人类慢肌纤维和快肌纤维的能量代谢

Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise.

作者信息

Ball-Burnett M, Green H J, Houston M E

机构信息

Department of Kinesiology, University of Waterloo, Ontario, Canada.

出版信息

J Physiol. 1991 Jun;437:257-67. doi: 10.1113/jphysiol.1991.sp018594.

Abstract
  1. The effects of prolonged exercise on energy metabolism in type I and type II muscle fibres in the vastus lateralis muscle were investigated in six male subjects (20.0 +/- 0.5 years, mean +/- S.E.M.) who performed one-legged cycling at 61% of maximum O2 consumption (VO2,max; determined with one leg) until fatigue or for a maximum of 2 h. 2. Analysis of pools of freeze-dried fibres obtained by needle biopsy and separated into specific types by the myofibrillar ATPase histochemical procedure indicated higher (P less than 0.05) lactate concentrations in type II fibres compared to type I fibres at 15 min (43.9 +/- 9.7 and 51.2 +/- 9.8 mmol (kg dry wt)-1) and at 60 min (18.2 +/- 4.7 and 25.9 +/- 6.5 mmol (kg dry wt)-1). No differences existed in lactate concentration between fibre types for pre-exercise (10.0 +/- 1.6 and 13.3 +/- 2.8 mmol (kg dry wt)-1) or post-exercise. 3. Glycogen degradation was most pronounced in type I fibres. By the end of exercise, glycogen concentration was 82.4 +/- 45 mmol glucosyl units (kg dry wt)-1 in type I fibres and 175 +/- 62 mmol glucosyl units (kg dry wt)-1 in type II fibres. 4. No significant changes in ATP and creatine phosphate (CrP) were found in either fibre type with exercise. 5. It is concluded that, at least for lactate and glycogen, fibre-specific differences are evident in prolonged submaximal exercise. The cause of the difference probably relates both to the unique energy metabolic characteristics of each fibre type and to the manner in which they are utilized during the exercise. 6. The failure to find a reduction in ATP concentration in either fibre type during prolonged exercise in the face of a progressive increase in the number of fibres showing little or no glycogen concentration suggests that protective mechanisms exist that prevent an energy crisis. The nature of these protective mechanisms remains to be elucidated.
摘要
  1. 对6名男性受试者(20.0±0.5岁,均值±标准误)进行研究,他们以单腿最大摄氧量(VO2,max;单腿测定)的61%进行单腿骑行,直至疲劳或最长持续2小时,以探究长时间运动对股外侧肌中I型和II型肌纤维能量代谢的影响。2. 通过针吸活检获取冻干纤维样本,并采用肌原纤维ATP酶组织化学方法将其分为特定类型,分析结果显示,在运动15分钟时(43.9±9.7和51.2±9.8 mmol(kg干重)-1)和60分钟时(18.2±4.7和25.9±6.5 mmol(kg干重)-1),II型纤维中的乳酸浓度高于I型纤维(P<0.05)。运动前(10.0±1.6和13.3±2.8 mmol(kg干重)-1)和运动后,纤维类型之间的乳酸浓度没有差异。3. 糖原降解在I型纤维中最为明显。运动结束时,I型纤维中的糖原浓度为82.4±45 mmol葡萄糖基单位(kg干重)-1,II型纤维中的糖原浓度为175±62 mmol葡萄糖基单位(kg干重)-1。4. 两种纤维类型在运动过程中ATP和磷酸肌酸(CrP)均未发现显著变化。5. 得出结论,至少对于乳酸和糖原而言,在长时间次最大运动中,纤维特异性差异明显。差异的原因可能既与每种纤维类型独特的能量代谢特征有关,也与运动过程中它们的利用方式有关。6. 在长时间运动过程中,尽管显示很少或没有糖原浓度的纤维数量逐渐增加,但两种纤维类型的ATP浓度均未降低,这表明存在防止能量危机的保护机制。这些保护机制的性质仍有待阐明。

相似文献

1
Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise.
J Physiol. 1991 Jun;437:257-67. doi: 10.1113/jphysiol.1991.sp018594.
2
Glycogen and lactate metabolism during low-intensity exercise in man.
Acta Physiol Scand. 1990 Jul;139(3):475-84. doi: 10.1111/j.1748-1716.1990.tb08949.x.
3
Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
J Physiol. 1992;451:205-27. doi: 10.1113/jphysiol.1992.sp019161.
4
5
The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting.
J Physiol. 1994 Jul 1;478 ( Pt 1)(Pt 1):149-55. doi: 10.1113/jphysiol.1994.sp020238.
7
Effects of short-term submaximal training in humans on muscle metabolism in exercise.
Am J Physiol. 1998 Jul;275(1):E132-9. doi: 10.1152/ajpendo.1998.275.1.E132.
8
Influence of reduced muscle temperature on metabolism in type I and type II human muscle fibres during intensive exercise.
Acta Physiol Scand. 1987 Dec;131(4):569-74. doi: 10.1111/j.1748-1716.1987.tb08277.x.
9
Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
J Appl Physiol (1985). 1993 Oct;75(4):1654-60. doi: 10.1152/jappl.1993.75.4.1654.
10
Metabolic adaptations to exercise: a review of potential beta-adrenoceptor antagonist effects.
Am J Cardiol. 1985 Apr 26;55(10):48D-58D. doi: 10.1016/0002-9149(85)91055-0.

引用本文的文献

1
In vivo imaging of glycogen in human muscle.
Nat Commun. 2024 Dec 30;15(1):10826. doi: 10.1038/s41467-024-55132-x.
2
Disuse-Induced Muscle Fatigue: Facts and Assumptions.
Int J Mol Sci. 2024 May 3;25(9):4984. doi: 10.3390/ijms25094984.
3
The molecular athlete: exercise physiology from mechanisms to medals.
Physiol Rev. 2023 Jul 1;103(3):1693-1787. doi: 10.1152/physrev.00017.2022. Epub 2023 Jan 5.
4
Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review.
Sports Med. 2021 Sep;51(9):1855-1874. doi: 10.1007/s40279-021-01475-0. Epub 2021 Apr 26.
5
Critical Power: An Important Fatigue Threshold in Exercise Physiology.
Med Sci Sports Exerc. 2016 Nov;48(11):2320-2334. doi: 10.1249/MSS.0000000000000939.
8
Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling.
Eur J Appl Physiol. 2008 Jul;103(4):461-8. doi: 10.1007/s00421-008-0738-2.
9
Prior heavy knee extension exercise does not affect V̇O₂ kinetics during subsequent heavy cycling exercise.
Eur J Appl Physiol. 2008 Mar;102(4):481-91. doi: 10.1007/s00421-007-0614-5. Epub 2007 Nov 20.

本文引用的文献

1
Open-circuit gas exchange analysis in the non-steady-state.
Can J Appl Sport Sci. 1980 Mar;5(1):15-8.
2
Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man.
Acta Physiol Scand. 1982 Mar;114(3):461-6. doi: 10.1111/j.1748-1716.1982.tb07010.x.
3
Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man.
Acta Physiol Scand. 1984 Dec;122(4):433-41. doi: 10.1111/j.1748-1716.1984.tb07531.x.
4
Diet, muscle glycogen and physical performance.
Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50. doi: 10.1111/j.1748-1716.1967.tb03720.x.
6
Phosphagen and carbohydrate metabolism during exercise in trained middle-aged men.
Scand J Clin Lab Invest. 1974 Feb;33(1):71-7. doi: 10.3109/00365517409114200.
7
Glycogen depletion patterns in human skeletal muscle fibers during prolonged work.
Pflugers Arch. 1973 Nov 15;344(1):1-12. doi: 10.1007/BF00587437.
8
Muscle fiber types: how many and what kind?
Arch Neurol. 1970 Oct;23(4):369-79. doi: 10.1001/archneur.1970.00480280083010.
9
Effect of varying exercise intensity on glycogen depletion in human muscle fibres.
Acta Physiol Scand. 1985 Nov;125(3):395-405. doi: 10.1111/j.1748-1716.1985.tb07735.x.
10
Neural control of phenotypic expression in mammalian muscle fibers.
Muscle Nerve. 1985 Oct;8(8):676-89. doi: 10.1002/mus.880080810.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验