Planiol T, Grandet P, Ribadeau-Dumas J L
Neurochirurgie. 1976;22(4):335-58.
Simultaneously to the development of new techniques such as the computerized axial tomography, the gamma-angioencephalography is progressing in the field of cerebral investigation in its original way, keeping on non invasing character. In view to analyze this evolution we shall examine first its technical possibilities, then the extractible data of the various techniques. Finally we will consider in which way we must bring most of our effort for the best utilization of the gamma-angioencephalography in the routine work, on one hand, and for progressing in the knowledge of the physiopathology of some lesions, specially vascular accidents, on the other hand. Technical modalities are multiple. Besides the standard technique (pertechnetate angiography with rapid sequential views, regional transit curves, early and late static views) it is possible to replace or to repete the injection: --changing the patient's position, --using another radiopharmaceutical labelled with technetium -or another isotope, or two tracers for two compartments; --carrying out a pharmacodynamic or CO2 test, --using radioxenon, and secondly a pure vascular tracer, to measure relative regional blood pool and relative regional blood flow. a) morphological ones (vascular tracks, regional blood pool, radioactive areas: number, form, homogeneity, outline), b) dynamic and quantitative ones (transit times, blood flow, extravascular diffusion, changes of these parameters when changing the radiopharmaceutic, or when using a test). Progresses can take place in three ways, very closely related to each other: a) In the methodology, to precise --relative merit of the different radiocompounds according to the various cerebral lesions, --methods for examination according to the clinical problems, --computing and date processing techniques. b) In the indications, to choose the best, the simplest, though the surest method for the daily clinical problems, and the best one to assemble special information escaping to the morphological radiological techniques. This choice needs frequent and close discussions between clinicians and nuclear specialists. c) In the signification of the data, to interprate correctly: --preferential uptakes in lesions or in compartments, --changes in the relative volumes of vascular bed and extravascular space in lesions, --vascular reactivity to an hemodynamic test, --accumulation or clearance of a diffusible tracer such as xenon. It is not always easy to reach a non equivocal interpretation of a whole group of data. It can be better to give a descriptive analysis which brings together elements for the diagnosis and physiopathological observations helpful for a therapeutic action and to follow up the disease at short and long term.
在计算机断层扫描等新技术不断发展的同时,γ-血管脑造影术正以其原有的方式在脑检查领域不断进步,保持着非侵入性的特点。为了分析这一发展,我们首先将研究其技术可能性,然后研究各种技术可提取的数据。最后,我们将考虑一方面在日常工作中为最佳利用γ-血管脑造影术,另一方面为在某些病变,特别是血管意外的病理生理学知识方面取得进展,我们必须在哪方面投入最大努力。技术方式多种多样。除了标准技术(用快速连续视图进行高锝酸盐血管造影、区域通过曲线、早期和晚期静态视图)外,还可以更换或重复注射:——改变患者体位,——使用另一种用锝标记的放射性药物或另一种同位素,或两种示踪剂用于两个腔室;——进行药效学或二氧化碳试验,——使用放射性氙,其次是一种纯血管示踪剂,以测量相对区域血池和相对区域血流。a)形态学方面(血管轨迹、区域血池、放射性区域:数量、形态、均匀性、轮廓),b)动态和定量方面(通过时间、血流、血管外扩散、改变放射性药物或进行试验时这些参数的变化)。进展可以通过三种相互密切相关的方式实现:a)在方法学上,明确——根据各种脑病变不同放射性化合物的相对优点,——根据临床问题的检查方法,——计算和数据处理技术。b)在适应证方面,为日常临床问题选择最佳、最简单但最可靠的方法,以及为收集形态学放射学技术无法获得的特殊信息选择最佳方法。这种选择需要临床医生和核医学专家之间频繁而密切的讨论。c)在数据的意义方面,正确解释:——病变或腔室中的优先摄取,——病变中血管床和血管外空间相对体积的变化,——对血流动力学试验的血管反应性,——氙等可扩散示踪剂的积聚或清除。对一整套数据进行明确无误的解释并非总是容易的。最好进行描述性分析,将有助于诊断和病理生理学观察的要素汇集在一起,以指导治疗行动并对疾病进行短期和长期的跟踪。