Schaper A, Urbanke C, Maass G
Medizinische Hochscuhule Hannover, Abteilung Biophysikalische Chemie, FRG.
J Biomol Struct Dyn. 1991 Jun;8(6):1211-32. doi: 10.1080/07391102.1991.10507879.
We have analyzed the static and dynamic behaviour of the circular single stranded DNA of the filamentous Escherichia coli phages F1 and M13mp8 in solution as a function of salt concentration using static and dynamic light scattering and sedimentation analysis in the analytical ultracentrifuge. We show by static light scattering that native and denatured single stranded DNA behave like a randomly coiled macromolecule at all salt concentrations used. The size of the native single stranded DNA is governed by the formation of secondary structures. While the radius of gyration decreases with increasing salt concentration the translational diffusion of the center-of-mass of native single stranded DNA and the sedimentation coefficient increase with increasing salt concentration in a biphasic manner. Below 100 mM monovalent cation concentration there is a strong dependence of the hydrodynamic parameters upon salt which is reduced approx. 3-fold at higher salt concentrations. We attribute the compaction of single stranded DNA by salt to electrostatic shielding and, in case of native single stranded DNA, secondary structure formation. Internal motions of the native single stranded DNA are observable at all salt concentrations and can be interpreted with a model of segmental diffusion of the elements of the polymer chain. The observed segmental diffusion coefficient of the native single stranded polynucleotide increases with increasing salt under the conditions investigated.
我们使用静态和动态光散射以及分析型超速离心机中的沉降分析,研究了丝状大肠杆菌噬菌体F1和M13mp8的环状单链DNA在溶液中的静态和动态行为随盐浓度的变化情况。通过静态光散射我们发现,在所有使用的盐浓度下,天然和变性的单链DNA的行为都类似于无规卷曲的大分子。天然单链DNA的大小由二级结构的形成决定。虽然回转半径随盐浓度增加而减小,但天然单链DNA质心的平动扩散和沉降系数随盐浓度增加呈双相增加。在单价阳离子浓度低于100 mM时,流体力学参数对盐有很强的依赖性,在较高盐浓度下这种依赖性降低了约3倍。我们将盐对单链DNA的压缩归因于静电屏蔽,对于天然单链DNA而言,还归因于二级结构的形成。在所有盐浓度下都可观察到天然单链DNA的内部运动,并且可以用聚合物链段的分段扩散模型来解释。在所研究的条件下,观察到的天然单链多核苷酸的分段扩散系数随盐浓度增加而增大。