Suppr超能文献

通过光散射和布朗动力学研究盐对超螺旋DNA结构和内部动力学的影响。

Salt effects on the structure and internal dynamics of superhelical DNAs studied by light scattering and Brownian dynamics.

作者信息

Hammermann M, Steinmaier C, Merlitz H, Kapp U, Waldeck W, Chirico G, Langowski J

机构信息

Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg.

出版信息

Biophys J. 1997 Nov;73(5):2674-87. doi: 10.1016/S0006-3495(97)78296-1.

Abstract

Using laser light scattering, we have measured the static and dynamic structure factor of two different superhelical DNAs, p1868 (1868 bp) and simian virus 40 (SV40) (5243 bp), in dilute aqueous solution at salt concentrations between 1 mM and 3 M NaCl. For both DNA molecules, Brownian dynamics (BD) simulations were also performed, using a previously described model. A Fourier mode decomposition procedure was used to compute theoretical light scattering autocorrelation functions (ACFs) from the BD trajectories. Both measured and computed autocorrelation functions were then subjected to the same multiexponential decomposition procedure. Simulated and measured relaxation times as a function of scattering angle were in very good agreement. Similarly, computed and measured static structure factors and radii of gyration agreed within experimental error. One main result of this study is that the amplitudes of the fast-relaxing component in the ACF show a peak at 1 M salt concentration. This nonmonotonic behavior might be caused by an initial increase in the amplitudes of internal motions due to diminishing long-range electrostatic repulsions, followed by a decrease at higher salt concentration due to a compaction of the structure.

摘要

利用激光光散射技术,我们测量了两种不同超螺旋DNA(p1868,1868碱基对;猿猴病毒40,SV40,5243碱基对)在1 mM至3 M NaCl盐浓度范围内的稀水溶液中的静态和动态结构因子。对于这两种DNA分子,还使用先前描述的模型进行了布朗动力学(BD)模拟。采用傅里叶模式分解程序从BD轨迹计算理论光散射自相关函数(ACF)。然后,对测量和计算得到的自相关函数都进行相同的多指数分解程序。模拟和测量得到的弛豫时间作为散射角的函数,两者吻合得非常好。同样,计算和测量得到的静态结构因子和回转半径在实验误差范围内相符。这项研究的一个主要结果是,ACF中快速弛豫成分的振幅在1 M盐浓度处出现一个峰值。这种非单调行为可能是由于远程静电排斥力减弱导致内部运动振幅最初增加,随后在较高盐浓度下由于结构压缩而减小所致。

相似文献

4
Superhelical DNA studied by solution scattering and computer models.
Genetica. 1999;106(1-2):49-55. doi: 10.1023/a:1003720610089.
5
The influence of salt on the structure and energetics of supercoiled DNA.
Biophys J. 1994 Dec;67(6):2146-66. doi: 10.1016/S0006-3495(94)80732-5.
6
Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition.
J Mol Biol. 1998 Nov 27;284(2):287-96. doi: 10.1006/jmbi.1998.2170.
7
Structure and dynamics of M13mp19 circular single-strand DNA: effects of ionic strength.
Biopolymers. 1990 Feb 5;29(2):357-76. doi: 10.1002/bip.360290208.
9
Light scattering studies of supercoiled and nicked DNA.
Biopolymers. 1996 Apr;38(4):535-52. doi: 10.1002/(SICI)1097-0282(199604)38:4%3C535::AID-BIP9%3E3.0.CO;2-U.
10
Salt effects on internal motions of superhelical and linear pUC8 DNA. Dynamic light scattering studies.
Biophys Chem. 1987 Sep;27(3):263-71. doi: 10.1016/0301-4622(87)80066-2.

引用本文的文献

1
Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1429-1435. doi: 10.1107/S1600577522008402. Epub 2022 Oct 10.
2
Requirements for DNA-Bridging Proteins to Act as Topological Barriers of the Bacterial Genome.
Biophys J. 2020 Sep 15;119(6):1215-1225. doi: 10.1016/j.bpj.2020.08.004. Epub 2020 Aug 12.
3
DNA RETENTION ON DEPTH FILTERS.
J Memb Sci. 2019 Jan 15;570-571:464-471. doi: 10.1016/j.memsci.2018.10.058. Epub 2018 Oct 24.
4
Jörg Langowski: his scientific legacy and the future it promises.
BMC Biophys. 2018 Jul 16;11:5. doi: 10.1186/s13628-018-0045-1. eCollection 2018.
6
Out of the Randomness: Correlating Noise in Biological Systems.
Biophys J. 2018 May 22;114(10):2298-2307. doi: 10.1016/j.bpj.2018.01.034. Epub 2018 Feb 21.
7
DNA-DNA interactions in tight supercoils are described by a small effective charge density.
Phys Rev Lett. 2010 Oct 8;105(15):158101. doi: 10.1103/PhysRevLett.105.158101. Epub 2010 Oct 4.
8
Internal dynamics of supercoiled DNA molecules.
Biophys J. 2009 Jun 17;96(12):4951-5. doi: 10.1016/j.bpj.2009.03.056.
9
Determining protein-induced DNA bending in force-extension experiments: theoretical analysis.
Biophys J. 2009 May 6;96(9):3591-9. doi: 10.1016/j.bpj.2009.02.022.
10
Polymer chain models of DNA and chromatin.
Eur Phys J E Soft Matter. 2006 Mar;19(3):241-9. doi: 10.1140/epje/i2005-10067-9. Epub 2006 Mar 20.

本文引用的文献

2
Brownian dynamics simulations of supercoiled DNA with bent sequences.
Biophys J. 1996 Aug;71(2):955-71. doi: 10.1016/S0006-3495(96)79299-8.
5
DNA curvature influences the internal motions of supercoiled DNA.
EMBO J. 1993 Nov;12(11):4407-12. doi: 10.1002/j.1460-2075.1993.tb06125.x.
6
Computer simulation of protein-induced structural changes in closed circular DNA.
J Mol Biol. 1994 Sep 23;242(3):271-90. doi: 10.1006/jmbi.1994.1578.
8
Salt effects on internal motions of superhelical and linear pUC8 DNA. Dynamic light scattering studies.
Biophys Chem. 1987 Sep;27(3):263-71. doi: 10.1016/0301-4622(87)80066-2.
9
DNA supercoiling promotes formation of a bent repression loop in lac DNA.
J Mol Biol. 1987 Jul 5;196(1):101-11. doi: 10.1016/0022-2836(87)90513-4.
10
Flexibility of DNA.
Annu Rev Biophys Biophys Chem. 1988;17:265-86. doi: 10.1146/annurev.bb.17.060188.001405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验