Suppr超能文献

内侧颞叶MRI研究中跨参与者配准技术的定量评估

A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe.

作者信息

Yassa Michael A, Stark Craig E L

机构信息

Center for Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.

出版信息

Neuroimage. 2009 Jan 15;44(2):319-27. doi: 10.1016/j.neuroimage.2008.09.016. Epub 2008 Sep 27.

Abstract

Accurate cross-participant alignment within the medial temporal lobe (MTL) region is critical for fMRI studies of memory. However, traditional alignment approaches have been exceptionally poor at registering structures in this area due to significant inter-individual anatomic variability. In this study, we evaluated the performance of twelve registration approaches. Specifically, we extended several traditional approaches such as SPM's normalization and AFNI's 3dWarpDrive to improve the quality of alignment in the MTL region by using weighting masks or applying the transformations directly to ROI segmentations. In addition, we evaluated the performance of three fully deformable methods, DARTEL, Diffeomorphic Demons, and LDDMM that are effectively unconstrained by number of degrees of freedom. For each, we first assessed the method's ability to achieve optimal overlap between segmentations of subregions of the MTL across participants. Then we evaluated the smoothness of group average structural images aligned using each method to assess the blur that results when voxels of different tissue types are averaged together. In general, we found that when anatomical segmentation is possible, substantial improvement in registration accuracy can be gained in the MTL even with a small number of deformations. When segmentation is not possible, the fully deformable models provide some improvement over more traditional approaches and in a few cases even approach the performance of the ROI-based approaches. The best performance is achieved when both methods are combined. We note that these conclusions are not limited to the MTL and are easily extendable to other areas of the brain.

摘要

内侧颞叶(MTL)区域内准确的跨参与者对齐对于记忆的功能磁共振成像(fMRI)研究至关重要。然而,由于个体间显著的解剖变异,传统的对齐方法在该区域的结构配准方面表现极差。在本研究中,我们评估了十二种配准方法的性能。具体而言,我们扩展了几种传统方法,如SPM的归一化和AFNI的3dWarpDrive,通过使用加权掩码或将变换直接应用于感兴趣区域(ROI)分割来提高MTL区域的对齐质量。此外,我们评估了三种完全可变形方法——DARTEL、微分同胚 demons和大变形微分同胚度量映射(LDDMM)的性能,这些方法实际上不受自由度数量的限制。对于每种方法,我们首先评估其在跨参与者的MTL子区域分割之间实现最佳重叠的能力。然后,我们评估使用每种方法对齐的组平均结构图像的平滑度,以评估不同组织类型的体素一起平均时产生的模糊程度。总体而言,我们发现当可以进行解剖分割时,即使进行少量变形,MTL区域的配准精度也能显著提高。当无法进行分割时,完全可变形模型比更传统的方法有一些改进,在少数情况下甚至接近基于ROI方法的性能。当两种方法结合使用时可实现最佳性能。我们注意到这些结论不仅限于MTL,并且很容易扩展到大脑的其他区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验