Suppr超能文献

从神经回路解码再评价和抑制:一种结合监督和无监督机器学习的方法。

Decoding reappraisal and suppression from neural circuits: A combined supervised and unsupervised machine learning approach.

机构信息

Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy.

Center for Medical Sciences - CISMed, University of Trento, Trento, Italy.

出版信息

Cogn Affect Behav Neurosci. 2023 Aug;23(4):1095-1112. doi: 10.3758/s13415-023-01076-6. Epub 2023 Mar 28.

Abstract

Emotion regulation is a core construct of mental health and deficits in emotion regulation abilities lead to psychological disorders. Reappraisal and suppression are two widely studied emotion regulation strategies but, possibly due to methodological limitations in previous studies, a consistent picture of the neural correlates related to the individual differences in their habitual use remains elusive. To address these issues, the present study applied a combination of unsupervised and supervised machine learning algorithms to the structural MRI scans of 128 individuals. First, unsupervised machine learning was used to separate the brain into naturally grouping grey matter circuits. Then, supervised machine learning was applied to predict individual differences in the use of different strategies of emotion regulation. Two predictive models, including structural brain features and psychological ones, were tested. Results showed that a temporo-parahippocampal-orbitofrontal network successfully predicted the individual differences in the use of reappraisal. Differently, insular and fronto-temporo-cerebellar networks successfully predicted suppression. In both predictive models, anxiety, the opposite strategy, and specific emotional intelligence factors played a role in predicting the use of reappraisal and suppression. This work provides new insights regarding the decoding of individual differences from structural features and other psychologically relevant variables while extending previous observations on the neural bases of emotion regulation strategies.

摘要

情绪调节是心理健康的核心结构,情绪调节能力的缺陷会导致心理障碍。再评价和抑制是两种广泛研究的情绪调节策略,但由于先前研究中的方法学限制,与习惯性使用个体差异相关的神经相关性的一致图像仍然难以捉摸。为了解决这些问题,本研究将无监督和监督机器学习算法应用于 128 个人的结构 MRI 扫描。首先,无监督机器学习被用于将大脑分成自然分组的灰质回路。然后,监督机器学习被用于预测不同情绪调节策略的个体差异。测试了两个预测模型,包括结构脑特征和心理特征。结果表明,颞叶-旁海马-眶额网络成功地预测了再评价的个体差异。不同的是,岛叶和额颞顶枕叶网络成功地预测了抑制。在这两个预测模型中,焦虑(相反的策略)和特定的情绪智力因素在预测再评价和抑制的使用中发挥了作用。这项工作提供了关于从结构特征和其他心理相关变量解码个体差异的新见解,同时扩展了关于情绪调节策略的神经基础的先前观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ffa/10400700/0b6a2992b47c/13415_2023_1076_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验