Amara Catherine E, Marcinek David J, Shankland Eric G, Schenkman Kenneth A, Arakaki Lorilee S L, Conley Kevin E
Department of Radiology, University of Washington Medical Center, Seattle, WA 98195, USA.
Methods. 2008 Dec;46(4):312-8. doi: 10.1016/j.ymeth.2008.10.001. Epub 2008 Oct 16.
Mitochondria integrate the key metabolic fluxes in the cell. This role places this organelle at the center of cellular energetics and, hence, mitochondrial dysfunction underlies a growing number of human disorders and age-related degenerative diseases. Here we present novel analytical and technical methods for evaluating mitochondrial metabolism and (dys)function in human muscle in vivo. Three innovations involving advances in optical spectroscopy (OS) and magnetic resonance spectroscopy (MRS) permit quantifying key compounds in energy metabolism to yield mitochondrial oxidation and phosphorylation fluxes. The first of these uses analytical methods applied to optical spectra to measure hemoglobin (Hb) and myoglobin (Mb) oxygenation states and relative contents ([Hb]/[Mb]) to determine mitochondrial respiration (O2 uptake) in vivo. The second uses MRS methods to quantify key high-energy compounds (creatine phosphate, PCr, and adenosine triphosphate, ATP) to determine mitochondrial phosphorylation (ATP flux) in vivo. The third involves a functional test that combines these spectroscopic approaches to determine mitochondrial energy coupling (ATP/O2), phosphorylation capacity (ATP(max)) and oxidative capacity (O2max) of muscle. These new developments in optical and MR tools allow us to determine the function and capacity of mitochondria noninvasively in order to identify specific defects in vivo that are associated with disease in human and animal muscle. The clinical implication of this unique diagnostic probe is the insight into the nature and extent of dysfunction in metabolic and degenerative disorders, as well as the ability to follow the impact of interventions designed to reverse these disorders.
线粒体整合细胞中的关键代谢通量。这一作用使该细胞器处于细胞能量学的核心位置,因此,线粒体功能障碍是越来越多人类疾病和与年龄相关的退行性疾病的基础。在此,我们展示了用于评估人体肌肉中线粒体代谢和(功能)障碍的新型分析和技术方法。三项涉及光学光谱(OS)和磁共振光谱(MRS)进展的创新技术能够对能量代谢中的关键化合物进行定量,从而得出线粒体氧化和磷酸化通量。其中第一项技术运用应用于光谱的分析方法来测量血红蛋白(Hb)和肌红蛋白(Mb)的氧合状态及相对含量([Hb]/[Mb]),以确定体内线粒体呼吸(氧气摄取)情况。第二项技术使用MRS方法对关键高能化合物(磷酸肌酸,PCr,和三磷酸腺苷,ATP)进行定量,以确定体内线粒体磷酸化(ATP通量)情况。第三项技术涉及一项功能测试,该测试结合了这些光谱学方法,以确定肌肉的线粒体能量耦合(ATP/O2)、磷酸化能力(ATP(max))和氧化能力(O2max)。光学和磁共振工具的这些新进展使我们能够无创地确定线粒体的功能和能力,以便识别与人类和动物肌肉疾病相关的体内特定缺陷。这种独特诊断探针的临床意义在于深入了解代谢和退行性疾病中功能障碍的性质和程度,以及跟踪旨在逆转这些疾病的干预措施的效果。