Suppr超能文献

Ssd1是酿酒酵母耐热性和Hsp104介导的蛋白质解聚所必需的。

Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.

作者信息

Mir Snober S, Fiedler David, Cashikar Anil G

机构信息

Center for Molecular Chaperones, Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, GA 30912, USA.

出版信息

Mol Cell Biol. 2009 Jan;29(1):187-200. doi: 10.1128/MCB.02271-07. Epub 2008 Oct 20.

Abstract

In the budding yeast Saccharomyces cerevisiae, the Hsp104-mediated disaggregation of protein aggregates is essential for thermotolerance and to facilitate the maintenance of prions. In humans, protein aggregation is associated with neuronal death and dysfunction in many neurodegenerative diseases. Mechanisms of aggregation surveillance that regulate protein disaggregation are likely to play a major role in cell survival after acute stress. However, such mechanisms have not been studied. In a screen using the yeast gene deletion library for mutants unable to survive an aggregation-inducing heat stress, we find that SSD1 is required for Hsp104-mediated protein disaggregation. SSD1 is a polymorphic gene that plays a role in cellular integrity, longevity, and pathogenicity in yeast. Allelic variants of SSD1 regulate the level of thermotolerance and cell wall remodeling. We have shown that Ssd1 influences the ability of Hsp104 to hexamerize, to interact with the cochaperone Sti1, and to bind protein aggregates. These results provide a paradigm for linking Ssd1-mediated cellular integrity and Hsp104-mediated disaggregation to ensure the survival of cells with fewer aggregates.

摘要

在出芽酵母酿酒酵母中,Hsp104介导的蛋白质聚集体解聚对于耐热性以及促进朊病毒的维持至关重要。在人类中,蛋白质聚集与许多神经退行性疾病中的神经元死亡和功能障碍相关。调节蛋白质解聚的聚集监测机制可能在急性应激后的细胞存活中起主要作用。然而,尚未对这类机制进行研究。在一项使用酵母基因缺失文库筛选无法在诱导聚集的热应激中存活的突变体的实验中,我们发现SSD1对于Hsp104介导的蛋白质解聚是必需的。SSD1是一个多态性基因,在酵母细胞完整性、寿命和致病性方面发挥作用。SSD1的等位基因变体调节耐热性水平和细胞壁重塑。我们已经表明,Ssd1影响Hsp104形成六聚体、与共伴侣蛋白Sti1相互作用以及结合蛋白质聚集体的能力。这些结果提供了一个范例,将Ssd1介导的细胞完整性与Hsp104介导的解聚联系起来以确保聚集体较少的细胞存活。

相似文献

1
Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.
Mol Cell Biol. 2009 Jan;29(1):187-200. doi: 10.1128/MCB.02271-07. Epub 2008 Oct 20.
2
Coordinated Hsp110 and Hsp104 Activities Power Protein Disaggregation in Saccharomyces cerevisiae.
Mol Cell Biol. 2017 May 16;37(11). doi: 10.1128/MCB.00027-17. Print 2017 Jun 1.
3
4
Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.
Microbiol Res. 2017 Jul;200:53-63. doi: 10.1016/j.micres.2017.03.009. Epub 2017 Apr 5.
8
A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104.
J Biol Chem. 2005 Jun 24;280(25):23869-75. doi: 10.1074/jbc.M502854200. Epub 2005 Apr 20.
9
Protein disaggregation mediated by heat-shock protein Hsp104.
Nature. 1994 Dec 1;372(6505):475-8. doi: 10.1038/372475a0.

引用本文的文献

1
Deletion of core septin gene in results in fungicidal activity of caspofungin.
bioRxiv. 2025 Feb 25:2025.02.25.640155. doi: 10.1101/2025.02.25.640155.
2
Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.
BMC Biol. 2024 Jul 4;22(1):149. doi: 10.1186/s12915-024-01945-7.
3
A common truncation is toxic to cells entering quiescence and promotes sporulation.
MicroPubl Biol. 2022 Dec 9;2022. doi: 10.17912/micropub.biology.000671. eCollection 2022.
4
Microtubule integrity regulates budding yeast RAM pathway gene expression.
Front Cell Dev Biol. 2022 Sep 12;10:989820. doi: 10.3389/fcell.2022.989820. eCollection 2022.
5
Response and regulatory mechanisms of heat resistance in pathogenic fungi.
Appl Microbiol Biotechnol. 2022 Sep;106(17):5415-5431. doi: 10.1007/s00253-022-12119-2. Epub 2022 Aug 9.
6
Post-transcriptional control of fungal cell wall synthesis.
Cell Surf. 2022 Jan 12;8:100074. doi: 10.1016/j.tcsw.2022.100074. eCollection 2022 Dec.
7
Role of in Phenotypic Variation of Strains Lacking -Dependent Pseudouridylation.
Int J Mol Sci. 2021 Aug 15;22(16):8753. doi: 10.3390/ijms22168753.
8
Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site.
Nucleic Acids Res. 2022 Mar 21;50(5):2923-2937. doi: 10.1093/nar/gkab615.
10
Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02353-20.

本文引用的文献

2
Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells.
Traffic. 2008 Jan;9(1):39-56. doi: 10.1111/j.1600-0854.2007.00666.x. Epub 2007 Nov 19.
4
Prions of fungi: inherited structures and biological roles.
Nat Rev Microbiol. 2007 Aug;5(8):611-8. doi: 10.1038/nrmicro1708.
5
Complexity of the heat stress response in plants.
Curr Opin Plant Biol. 2007 Jun;10(3):310-6. doi: 10.1016/j.pbi.2007.04.011. Epub 2007 May 4.
6
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
Nature. 2007 Apr 12;446(7137):806-10. doi: 10.1038/nature05649. Epub 2007 Feb 21.
7
Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity.
Nat Struct Mol Biol. 2007 Feb;14(2):114-22. doi: 10.1038/nsmb1198. Epub 2007 Jan 28.
8
Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance.
PLoS Biol. 2007 Feb;5(2):e24. doi: 10.1371/journal.pbio.0050024.
9
Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):101-12. doi: 10.1038/nrm2101.
10
M domains couple the ClpB threading motor with the DnaK chaperone activity.
Mol Cell. 2007 Jan 26;25(2):247-60. doi: 10.1016/j.molcel.2006.11.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验