Suppr超能文献

乳酸乳球菌中的核黄素转运蛋白RibU:基因表达及转运机制的分子特征

The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.

作者信息

Burgess Catherine M, Slotboom Dirk Jan, Geertsma Eric R, Duurkens Ria H, Poolman Bert, van Sinderen Douwe

机构信息

Alimentary Pharmabiotic Centre, Department of Microbiology and Biosciences Institute, National University of Ireland Cork, Western Road, Cork, Ireland.

出版信息

J Bacteriol. 2006 Apr;188(8):2752-60. doi: 10.1128/JB.188.8.2752-2760.2006.

Abstract

This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport Classification Database. Transcriptional analysis revealed that ribU transcription is downregulated in response to riboflavin and flavin mononucleotide (FMN), presumably by means of the structurally conserved RFN (riboflavin) element located between the transcription start site and the start codon. An L. lactis strain carrying a mutated ribU gene exhibits altered transcriptional control of the riboflavin biosynthesis operon ribGBAH in response to riboflavin and FMN and does not consume riboflavin from its growth medium. Furthermore, it was shown that radiolabeled riboflavin is not taken up by the ribU mutant strain, in contrast to the wild-type strain, directly demonstrating the involvement of RibU in riboflavin uptake. FMN and the toxic riboflavin analogue roseoflavin were shown to inhibit riboflavin uptake and are likely to be RibU substrates. FMN transport by RibU is consistent with the observed transcriptional regulation of the ribGBAH operon by external FMN. The presented transport data are consistent with a uniport mechanism for riboflavin translocation and provide the first detailed molecular and functional analysis of a bacterial protein involved in riboflavin transport.

摘要

本研究描述了乳酸菌乳酸乳球菌亚种cremoris NZ9000中核黄素转运蛋白RibU的特性。RibU预计含有五个跨膜区段,是一个新的转运蛋白家族的成员,运输分类数据库中未对此进行描述。转录分析表明,核黄素和黄素单核苷酸(FMN)会下调ribU的转录,推测是通过位于转录起始位点和起始密码子之间结构保守的RFN(核黄素)元件实现的。携带突变ribU基因的乳酸乳球菌菌株在响应核黄素和FMN时,核黄素生物合成操纵子ribGBAH的转录调控发生改变,且不从其生长培养基中消耗核黄素。此外,与野生型菌株相比,放射性标记的核黄素未被ribU突变株摄取,直接证明了RibU参与核黄素摄取。FMN和有毒的核黄素类似物玫红菌素可抑制核黄素摄取,且可能是RibU的底物。RibU对FMN的转运与观察到的外部FMN对ribGBAH操纵子的转录调控一致。所呈现的转运数据与核黄素转运的单向转运机制一致,并首次对参与核黄素转运的细菌蛋白进行了详细的分子和功能分析。

相似文献

2
Flavin binding to the high affinity riboflavin transporter RibU.
J Biol Chem. 2007 Apr 6;282(14):10380-6. doi: 10.1074/jbc.M608583200. Epub 2007 Feb 8.
3
Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods.
Appl Environ Microbiol. 2004 Oct;70(10):5769-77. doi: 10.1128/AEM.70.10.5769-5777.2004.
4
RibU is an essential determinant of pathogenesis that mediates acquisition of FMN and FAD during intracellular growth.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2122173119. doi: 10.1073/pnas.2122173119. Epub 2022 Mar 22.
6
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Cell Chem Biol. 2017 May 18;24(5):576-588.e6. doi: 10.1016/j.chembiol.2017.03.014. Epub 2017 Apr 20.
8
Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
J Bacteriol. 2007 Oct;189(20):7367-75. doi: 10.1128/JB.00590-07. Epub 2007 Aug 10.
9

引用本文的文献

1
Vitamin biosynthesis in the gut: interplay between mammalian host and its resident microbiota.
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0018423. doi: 10.1128/mmbr.00184-23. Epub 2025 Apr 2.
3
Role of riboflavin biosynthesis gene duplication and transporter in virulence in marine teleost fish.
Virulence. 2023 Dec;14(1):2187025. doi: 10.1080/21505594.2023.2187025.
4
An -Like Operon and Its Relationship to Riboflavin Utilization and Mammalian Infectivity by Borrelia burgdorferi.
Infect Immun. 2021 Sep 16;89(10):e0030721. doi: 10.1128/IAI.00307-21. Epub 2021 Jul 12.
5
Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview.
Front Bioeng Biotechnol. 2020 Nov 12;8:570828. doi: 10.3389/fbioe.2020.570828. eCollection 2020.
7
Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal subsp. ATCC 15697.
Front Microbiol. 2020 Sep 15;11:573335. doi: 10.3389/fmicb.2020.573335. eCollection 2020.
8
Heme Uptake in Evidenced by a New Energy Coupling Factor (ECF)-Like Transport System.
Appl Environ Microbiol. 2020 Sep 1;86(18). doi: 10.1128/AEM.02847-19.
9
Contribution of riboflavin supply pathways to in different environments.
Gut Pathog. 2017 Nov 14;9:64. doi: 10.1186/s13099-017-0214-9. eCollection 2017.

本文引用的文献

1
Improved medium for lactic streptococci and their bacteriophages.
Appl Microbiol. 1975 Jun;29(6):807-13. doi: 10.1128/am.29.6.807-813.1975.
2
The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae.
J Biol Chem. 2005 Dec 2;280(48):39809-17. doi: 10.1074/jbc.M505002200. Epub 2005 Oct 4.
3
Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods.
Appl Environ Microbiol. 2004 Oct;70(10):5769-77. doi: 10.1128/AEM.70.10.5769-5777.2004.
4
The IUBMB-endorsed transporter classification system.
Mol Biotechnol. 2004 Jul;27(3):253-62. doi: 10.1385/mb:27:3:253.
5
Multivitamin production in Lactococcus lactis using metabolic engineering.
Metab Eng. 2004 Apr;6(2):109-15. doi: 10.1016/j.ymben.2003.11.002.
6
Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins.
Annu Rev Physiol. 2004;66:419-46. doi: 10.1146/annurev.physiol.66.032102.144611.
7
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
8
The ascorbate transporter of Escherichia coli.
J Bacteriol. 2003 Apr;185(7):2243-50. doi: 10.1128/JB.185.7.2243-2250.2003.
9
Rfam: an RNA family database.
Nucleic Acids Res. 2003 Jan 1;31(1):439-41. doi: 10.1093/nar/gkg006.
10
Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria.
Cell. 2002 Nov 27;111(5):747-56. doi: 10.1016/s0092-8674(02)01134-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验