Burgess Catherine M, Slotboom Dirk Jan, Geertsma Eric R, Duurkens Ria H, Poolman Bert, van Sinderen Douwe
Alimentary Pharmabiotic Centre, Department of Microbiology and Biosciences Institute, National University of Ireland Cork, Western Road, Cork, Ireland.
J Bacteriol. 2006 Apr;188(8):2752-60. doi: 10.1128/JB.188.8.2752-2760.2006.
This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport Classification Database. Transcriptional analysis revealed that ribU transcription is downregulated in response to riboflavin and flavin mononucleotide (FMN), presumably by means of the structurally conserved RFN (riboflavin) element located between the transcription start site and the start codon. An L. lactis strain carrying a mutated ribU gene exhibits altered transcriptional control of the riboflavin biosynthesis operon ribGBAH in response to riboflavin and FMN and does not consume riboflavin from its growth medium. Furthermore, it was shown that radiolabeled riboflavin is not taken up by the ribU mutant strain, in contrast to the wild-type strain, directly demonstrating the involvement of RibU in riboflavin uptake. FMN and the toxic riboflavin analogue roseoflavin were shown to inhibit riboflavin uptake and are likely to be RibU substrates. FMN transport by RibU is consistent with the observed transcriptional regulation of the ribGBAH operon by external FMN. The presented transport data are consistent with a uniport mechanism for riboflavin translocation and provide the first detailed molecular and functional analysis of a bacterial protein involved in riboflavin transport.
本研究描述了乳酸菌乳酸乳球菌亚种cremoris NZ9000中核黄素转运蛋白RibU的特性。RibU预计含有五个跨膜区段,是一个新的转运蛋白家族的成员,运输分类数据库中未对此进行描述。转录分析表明,核黄素和黄素单核苷酸(FMN)会下调ribU的转录,推测是通过位于转录起始位点和起始密码子之间结构保守的RFN(核黄素)元件实现的。携带突变ribU基因的乳酸乳球菌菌株在响应核黄素和FMN时,核黄素生物合成操纵子ribGBAH的转录调控发生改变,且不从其生长培养基中消耗核黄素。此外,与野生型菌株相比,放射性标记的核黄素未被ribU突变株摄取,直接证明了RibU参与核黄素摄取。FMN和有毒的核黄素类似物玫红菌素可抑制核黄素摄取,且可能是RibU的底物。RibU对FMN的转运与观察到的外部FMN对ribGBAH操纵子的转录调控一致。所呈现的转运数据与核黄素转运的单向转运机制一致,并首次对参与核黄素转运的细菌蛋白进行了详细的分子和功能分析。