Suppr超能文献

用于预测抗HIV-1治疗反应的分类器融合方法比较

Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy.

作者信息

Altmann André, Rosen-Zvi Michal, Prosperi Mattia, Aharoni Ehud, Neuvirth Hani, Schülter Eugen, Büch Joachim, Struck Daniel, Peres Yardena, Incardona Francesca, Sönnerborg Anders, Kaiser Rolf, Zazzi Maurizio, Lengauer Thomas

机构信息

Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany.

出版信息

PLoS One. 2008;3(10):e3470. doi: 10.1371/journal.pone.0003470. Epub 2008 Oct 21.

Abstract

BACKGROUND

Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work we compare different classifier fusion methods for combining the individual classifiers.

PRINCIPAL FINDINGS

The individual classifiers yielded similar performance, and all the combination approaches considered performed equally well. The gain in performance due to combining methods did not reach statistical significance compared to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600 instances compared to 2,700) the combination significantly outperformed the individual classifiers (p<0.01; paired one-sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance. Discovery of these therapy courses is a further hint for the robustness of the combined system.

CONCLUSION

The combined EuResist prediction engine is freely available at http://engine.euresist.org.

摘要

背景

分析病毒基因组中的耐药性突变是指导人类免疫缺陷病毒1型(HIV-1)感染患者治疗选择的先进方法。这些突变会改变病毒靶蛋白的结构,在保持有效复制能力的同时,降低或在最坏的情况下完全抑制抗逆转录病毒化合物的作用。现代抗HIV-1治疗方案包含多种药物,以预防或至少延缓耐药性突变的产生。然而,常用的HIV-1基因型解读系统仅提供单一药物的分类。EuResist计划收集了约18500名患者的数据,用于训练三个分类器,以便在已知病毒基因型和其他信息的情况下预测对抗逆转录病毒联合疗法的反应。在这项工作中,我们比较了用于组合各个分类器的不同分类器融合方法。

主要发现

各个分类器的表现相似,所有考虑的组合方法表现相当。与完整训练集上的单个最佳分类器相比,组合方法带来的性能提升未达到统计学显著性。然而,在较小的训练集规模下(与2700个实例相比,为200至1600个实例),组合方法显著优于单个分类器(p<0.01;配对单侧Wilcoxon检验)。与单个预测引擎相比,标准偏差持续降低,这表明组合系统的行为更稳健。此外,使用组合系统我们能够识别出一类治疗疗程,这类疗程导致系统性能持续被低估(约0.05 AUC)。发现这些治疗疗程进一步证明了组合系统的稳健性。

结论

组合后的EuResist预测引擎可在http://engine.euresist.org免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71f1/2565127/ec99b8f6777f/pone.0003470.g001.jpg

相似文献

1
Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy.
PLoS One. 2008;3(10):e3470. doi: 10.1371/journal.pone.0003470. Epub 2008 Oct 21.
2
Predicting response to antiretroviral treatment by machine learning: the EuResist project.
Intervirology. 2012;55(2):123-7. doi: 10.1159/000332008. Epub 2012 Jan 24.
4
Learning from past treatments and their outcome improves prediction of in vivo response to anti-HIV therapy.
Stat Appl Genet Mol Biol. 2011;10:Article 6. doi: 10.2202/1544-6115.1604. Epub 2011 Jan 14.
5
A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy.
Artif Intell Med. 2009 Sep;47(1):63-74. doi: 10.1016/j.artmed.2009.05.002. Epub 2009 Jun 12.

引用本文的文献

1
Preoperative kidney tumor risk estimation with AI: From logistic regression to transformer.
PLoS One. 2025 May 30;20(5):e0323240. doi: 10.1371/journal.pone.0323240. eCollection 2025.
2
Non-Contact Supervision of COVID-19 Breathing Behaviour With FMCW Radar and Stacked Ensemble Learning Model in Real-Time.
IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):664-678. doi: 10.1109/TBCAS.2022.3192359. Epub 2022 Oct 13.
3
Machine Learning Classification of False-Positive Human Immunodeficiency Virus Screening Results.
J Pathol Inform. 2021 Nov 20;12:46. doi: 10.4103/jpi.jpi_7_21. eCollection 2021.
4
Using decision fusion methods to improve outbreak detection in disease surveillance.
BMC Med Inform Decis Mak. 2019 Mar 5;19(1):38. doi: 10.1186/s12911-019-0774-3.
6
Large-scale protein function prediction using heterogeneous ensembles.
F1000Res. 2018 Sep 28;7. doi: 10.12688/f1000research.16415.1. eCollection 2018.
7
LEARNING PARSIMONIOUS ENSEMBLES FOR UNBALANCED COMPUTATIONAL GENOMICS PROBLEMS.
Pac Symp Biocomput. 2017;22:288-299. doi: 10.1142/9789813207813_0028.
8
Predicting protein function and other biomedical characteristics with heterogeneous ensembles.
Methods. 2016 Jan 15;93:92-102. doi: 10.1016/j.ymeth.2015.08.016. Epub 2015 Sep 2.
9
Predictions of CD4 lymphocytes' count in HIV patients from complete blood count.
BMC Med Phys. 2013 Sep 14;13(1):3. doi: 10.1186/1756-6649-13-3.
10
The individualized genetic barrier predicts treatment response in a large cohort of HIV-1 infected patients.
PLoS Comput Biol. 2013;9(8):e1003203. doi: 10.1371/journal.pcbi.1003203. Epub 2013 Aug 29.

本文引用的文献

2
Selecting anti-HIV therapies based on a variety of genomic and clinical factors.
Bioinformatics. 2008 Jul 1;24(13):i399-406. doi: 10.1093/bioinformatics/btn141.
3
Switching between selection and fusion in combining classifiers: an experiment.
IEEE Trans Syst Man Cybern B Cybern. 2002;32(2):146-56. doi: 10.1109/3477.990871.
4
Update of the drug resistance mutations in HIV-1: 2007.
Top HIV Med. 2007 Aug-Sep;15(4):119-25.
7
Super learning: an application to the prediction of HIV-1 drug resistance.
Stat Appl Genet Mol Biol. 2007;6:Article7. doi: 10.2202/1544-6115.1240. Epub 2007 Feb 23.
8
Bioinformatics-assisted anti-HIV therapy.
Nat Rev Microbiol. 2006 Oct;4(10):790-7. doi: 10.1038/nrmicro1477.
9
Learning multiple evolutionary pathways from cross-sectional data.
J Comput Biol. 2005 Jul-Aug;12(6):584-98. doi: 10.1089/cmb.2005.12.584.
10
Estimating HIV evolutionary pathways and the genetic barrier to drug resistance.
J Infect Dis. 2005 Jun 1;191(11):1953-60. doi: 10.1086/430005. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验