Suppr超能文献

利用 FMCW 雷达和堆叠集成学习模型实时非接触式监测 COVID-19 呼吸行为

Non-Contact Supervision of COVID-19 Breathing Behaviour With FMCW Radar and Stacked Ensemble Learning Model in Real-Time.

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):664-678. doi: 10.1109/TBCAS.2022.3192359. Epub 2022 Oct 13.

Abstract

A respiratory disorder that attacks COVID-19 patients requires intensive supervision of medical practitioners during the isolation period. A non-contact monitoring device will be a suitable solution for reducing the spread risk of the virus while monitoring the COVID-19 patient. This study uses Frequency-Modulated Continuous Wave (FMCW) radar and Machine Learning (ML) to obtain respiratory information and analyze respiratory signals, respectively. Multiple subjects in a room can be detected simultaneously by calculating the Angle of Arrival (AoA) of the received signal and utilizing the Multiple Input Multiple Output (MIMO) of FMCW radar. Fast Fourier Transform (FFT) and some signal processing are implemented to obtain a breathing waveform. ML helps the system to analyze the respiratory signals automatically. This paper also compares the performance of several ML algorithms such as Multinomial Logistic Regression (MLR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), CatBoosting (CB) Classifier, Multilayer Perceptron (MLP), and three proposed stacked ensemble models, namely Stacked Ensemble Classifier (SEC), Boosting Tree-based Stacked Classifier (BTSC), and Neural Stacked Ensemble Model (NSEM) to obtain the best ML model. The results show that the NSEM algorithm achieves the best performance with 97.1% accuracy. In the real-time implementation, the system could simultaneously detect several objects with different breathing characteristics and classify the respiratory signals into five different classes.

摘要

一种侵袭 COVID-19 患者的呼吸系统疾病,需要医疗从业者在隔离期间进行密切监护。非接触式监测设备在监测 COVID-19 患者的同时,也将成为降低病毒传播风险的有效手段。本研究使用调频连续波(FMCW)雷达和机器学习(ML)分别获取呼吸信息和分析呼吸信号。通过计算接收信号的到达角(AoA)并利用 FMCW 雷达的多输入多输出(MIMO),可以同时检测多个房间内的多个对象。快速傅里叶变换(FFT)和一些信号处理用于获取呼吸波形。ML 有助于系统自动分析呼吸信号。本文还比较了几种 ML 算法的性能,例如多项逻辑回归(MLR)、决策树(DT)、随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGB)、轻梯度提升机(LGBM)、CatBoosting(CB)分类器、多层感知机(MLP)和三个提出的堆叠集成模型,即堆叠集成分类器(SEC)、基于提升树的堆叠分类器(BTSC)和神经堆叠集成模型(NSEM),以获得最佳的 ML 模型。结果表明,NSEM 算法的准确率达到 97.1%,性能最佳。在实时实现中,该系统可以同时检测具有不同呼吸特征的多个对象,并将呼吸信号分类为五个不同的类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac93/9647724/4ec17b7c4208/lin1-3192359.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验