Hildebrand A, Pohl M, Bhakdi S
La Jolla Cancer Research Foundation, Cancer Research Center, California 92037.
J Biol Chem. 1991 Sep 15;266(26):17195-200.
Staphylococcal alpha-toxin was radiolabeled to high specific radioactivity (1,500-3,000 Ci/mmol) under retention of its hemolytic activity. Binding studies with susceptible rabbit erythrocytes and highly resistant human erythrocytes revealed that binding of alpha-toxin to target cells can occur via two different mechanisms. Binding of alpha-toxin to rabbit erythrocytes initially involves specific binding sites and occurs at low concentrations, with half-maximal binding at 1-2 nM. In contrast, toxin binding to human erythrocytes is absorptive and nonspecific, in this case, significant binding as well as hemolysis occur only at alpha-toxin concentrations exceeding 1 microM. Autoradiographic analyses of membrane-associated alpha-toxin from either cell species proved that hemolysis was inevitably associated with the formation of toxin hexamers. Our data indicate that the high susceptibility of certain target cells toward alpha-toxin is caused by the presence of specific binding sites. However, membrane damage of both susceptible and nonsusceptible target cells occurs via a common mechanism involving toxin oligomerization and pore formation.