Suppr超能文献

生物标志物作为即时检测手段,指导初级保健中急性呼吸道感染患者使用抗生素的处方。

Biomarkers as point-of-care tests to guide prescription of antibiotics in people with acute respiratory infections in primary care.

机构信息

Department of Geriatric Medicine, Odense University Hospital, Odense, Denmark.

Geriatric Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

Cochrane Database Syst Rev. 2022 Oct 17;10(10):CD010130. doi: 10.1002/14651858.CD010130.pub3.

Abstract

BACKGROUND

Acute respiratory infections (ARIs) are by far the most common reason for prescribing an antibiotic in primary care, even though the majority of ARIs are of viral or non-severe bacterial aetiology. It follows that in many cases antibiotic use will not be beneficial to a patient's recovery but may expose them to potential side effects. Furthermore, limiting unnecessary antibiotic use is a key factor in controlling antibiotic resistance. One strategy to reduce antibiotic use in primary care is point-of-care biomarkers. A point-of-care biomarker (test) of inflammation identifies part of the acute phase response to tissue injury regardless of the aetiology (infection, trauma, or inflammation) and may be used as a surrogate marker of infection, potentially assisting the physician in the clinical decision whether to use an antibiotic to treat ARIs. Biomarkers may guide antibiotic prescription by ruling out a serious bacterial infection and help identify patients in whom no benefit from antibiotic treatment can be anticipated. This is an update of a Cochrane Review first published in 2014.

OBJECTIVES

To assess the benefits and harms of point-of-care biomarker tests of inflammation to guide antibiotic treatment in people presenting with symptoms of acute respiratory infections in primary care settings regardless of patient age.

SEARCH METHODS

We searched CENTRAL (2022, Issue 6), MEDLINE (1946 to 14 June 2022), Embase (1974 to 14 June 2022), CINAHL (1981 to 14 June 2022), Web of Science (1955 to 14 June 2022), and LILACS (1982 to 14 June 2022). We also searched three trial registries (10 December 2021) for completed and ongoing trials.

SELECTION CRITERIA

We included randomised controlled trials (RCTs) in primary care patients with ARIs that compared the use of point-of-care biomarkers with standard care. We included trials that randomised individual participants, as well as trials that randomised clusters of patients (cluster-RCTs).

DATA COLLECTION AND ANALYSIS

Two review authors independently extracted data on the following primary outcomes: number of participants given an antibiotic prescription at index consultation and within 28 days follow-up; participant recovery within seven days follow-up; and total mortality within 28 days follow-up. We assessed risk of bias using the Cochrane risk of bias tool and the certainty of the evidence using GRADE. We used random-effects meta-analyses when feasible. We further analysed results with considerable heterogeneity in prespecified subgroups of individual and cluster-RCTs.

MAIN RESULTS

We included seven new trials in this update, for a total of 13 included trials. Twelve trials (10,218 participants in total, 2335 of which were children) evaluated a C-reactive protein point-of-care test, and one trial (317 adult participants) evaluated a procalcitonin point-of-care test. The studies were conducted in Europe, Russia, and Asia. Overall, the included trials had a low or unclear risk of bias. However all studies were open-labelled, thereby introducing high risk of bias due to lack of blinding. The use of C-reactive protein point-of-care tests to guide antibiotic prescription likely reduces the number of participants given an antibiotic prescription, from 516 prescriptions of antibiotics per 1000 participants in the control group to 397 prescriptions of antibiotics per 1000 participants in the intervention group (risk ratio (RR) 0.77, 95% confidence interval (CI) 0.69 to 0.86; 12 trials, 10,218 participants; I² = 79%; moderate-certainty evidence).  Overall, use of C-reactive protein tests also reduce the number of participants given an antibiotic prescription within 28 days follow-up (664 prescriptions of antibiotics per 1000 participants in the control group versus 538 prescriptions of antibiotics per 1000 participants in the intervention group) (RR 0.81, 95% CI 0.76 to 0.86; 7 trials, 5091 participants; I² = 29; high-certainty evidence). The prescription of antibiotics as guided by C-reactive protein tests likely does not reduce the number of participants recovered, within seven or 28 days follow-up (567 participants recovered within seven days follow-up per 1000 participants in the control group versus 584 participants recovered within seven days follow-up per 1000 participants in the intervention group) (recovery within seven days follow-up: RR 1.03, 95% CI 0.96 to 1.12; I² = 0%; moderate-certainty evidence) (recovery within 28 days follow-up: RR 1.02, 95% CI 0.79 to 1.32; I² = 0%; moderate-certainty evidence). The use of C-reactive protein tests may not increase total mortality within 28 days follow-up, from 1 death per 1000 participants in the control group to 0 deaths per 1000 participants in the intervention group (RR 0.53, 95% CI 0.10 to 2.92; I² = 0%; low-certainty evidence). We are uncertain as to whether procalcitonin affects any of the primary or secondary outcomes because there were few participants, thereby limiting the certainty of evidence. We assessed the certainty of the evidence as moderate to high according to GRADE for the primary outcomes for C-reactive protein test, except for mortality, as there were very few deaths, thereby limiting the certainty of the evidence.

AUTHORS' CONCLUSIONS: The use of C-reactive protein point-of-care tests as an adjunct to standard care likely reduces the number of participants given an antibiotic prescription in primary care patients who present with symptoms of acute respiratory infection. The use of C-reactive protein point-of-care tests likely does not affect recovery rates. It is unlikely that further research will substantially change our conclusion regarding the reduction in number of participants given an antibiotic prescription, although the size of the estimated effect may change.  The use of C-reactive protein point-of-care tests may not increase mortality within 28 days follow-up, but there were very few events. Studies that recorded deaths and hospital admissions were performed in children from low- and middle-income countries and older adults with comorbidities.  Future studies should focus on children, immunocompromised individuals, and people aged 80 years and above with comorbidities. More studies evaluating procalcitonin and potential new biomarkers as point-of-care tests used in primary care to guide antibiotic prescription are needed.  Furthermore, studies are needed to validate C-reactive protein decision algorithms, with a specific focus on potential age group differences.

摘要

背景

急性呼吸道感染(ARI)是初级保健中开具抗生素处方的最常见原因,尽管大多数 ARI 是病毒或非严重细菌病因引起的。因此,在许多情况下,抗生素的使用对患者的康复没有益处,但可能使他们面临潜在的副作用。此外,限制不必要的抗生素使用是控制抗生素耐药性的关键因素之一。减少初级保健中抗生素使用的一种策略是即时检测(point-of-care)生物标志物。即时检测生物标志物(测试)可识别组织损伤的急性相反应的一部分,无论病因(感染、创伤或炎症)如何,可作为感染的替代标志物,有助于医生在临床决策中决定是否使用抗生素治疗 ARI。生物标志物可通过排除严重细菌感染来指导抗生素的使用,并有助于识别出无法从抗生素治疗中获益的患者。这是一篇发表于 2014 年的 Cochrane 综述的更新。

目的

评估即时检测炎症生物标志物在初级保健环境中出现急性呼吸道感染症状的患者中指导抗生素治疗的获益和危害,无论患者年龄如何。

检索策略

我们检索了 Cochrane 中心对照试验数据库(CENTRAL,2022 年第 6 期)、医学文献分析与检索系统(MEDLINE,1946 年至 2022 年 6 月 14 日)、荷兰医学文摘数据库(Embase,1974 年至 2022 年 6 月 14 日)、美国护理索引数据库(CINAHL,1981 年至 2022 年 6 月 14 日)、科学引文索引数据库(Web of Science,1955 年至 2022 年 6 月 14 日)和拉丁美洲和加勒比健康科学文献数据库(LILACS,1982 年至 2022 年 6 月 14 日)。我们还对三个试验注册库(2021 年 12 月 10 日)进行了检索,以查找已完成和正在进行的试验。

入选标准

我们纳入了在初级保健患者中比较即时检测生物标志物与标准护理的随机对照试验(RCT)。我们纳入了个体参与者随机分组的试验,以及以患者为单位随机分组的试验(整群随机对照试验)。

数据收集与分析

两位综述作者独立提取了索引咨询和 28 天随访期间开具抗生素处方的参与者数量、7 天随访期间的患者康复情况以及 28 天随访期间的总死亡率等主要结局的数据。我们使用 Cochrane 偏倚风险工具评估了偏倚风险,并使用 GRADE 评估了证据的确定性。当可行时,我们使用了随机效应荟萃分析。我们还在个体和整群随机对照试验的预设亚组中进一步分析了结果。

主要结果

本更新纳入了 7 项新试验,共纳入 13 项试验,总计 10218 名参与者,其中 2335 名为儿童。12 项研究(10218 名参与者,其中 2335 名为儿童)评估了 C 反应蛋白即时检测,1 项研究(317 名成年参与者)评估了降钙素原即时检测。这些研究在欧洲、俄罗斯和亚洲进行。总体而言,纳入的试验偏倚风险较低或不明确。然而,所有研究均为开放标签,因此由于缺乏盲法,存在较高的偏倚风险。使用 C 反应蛋白即时检测指导抗生素处方可能会减少开具抗生素处方的人数,从对照组每 1000 名参与者中开具 516 份抗生素处方减少至干预组每 1000 名参与者中开具 397 份抗生素处方(风险比(RR)0.77,95%置信区间(CI)0.69 至 0.86;12 项试验,10218 名参与者;I²=79%;中等确定性证据)。总体而言,使用 C 反应蛋白检测也减少了对照组每 1000 名参与者中开具 28 天随访期间开具抗生素处方的人数(从 664 份抗生素处方减少至 538 份抗生素处方)(RR 0.81,95%CI 0.76 至 0.86;7 项试验,5091 名参与者;I²=29%;高确定性证据)。根据 C 反应蛋白检测指导开具抗生素处方可能不会减少参与者在 7 天或 28 天随访期间的康复人数(对照组每 1000 名参与者中有 567 名在 7 天内康复,而干预组每 1000 名参与者中有 584 名在 7 天内康复)(7 天内康复:RR 1.03,95%CI 0.96 至 1.12;I²=0%;中等确定性证据)(28 天内康复:RR 1.02,95%CI 0.79 至 1.32;I²=0%;中等确定性证据)。使用 C 反应蛋白检测可能不会增加 28 天随访期间的总死亡率,从对照组每 1000 名参与者中 1 例死亡减少至干预组每 1000 名参与者中 0 例死亡(RR 0.53,95%CI 0.10 至 2.92;I²=0%;低确定性证据)。我们不确定降钙素原是否会影响任何主要或次要结局,因为参与者人数较少,因此限制了证据的确定性。我们根据 GRADE 将 C 反应蛋白检测的主要结局评估为中等至高度确定性,除了死亡率,因为死亡人数很少,因此限制了证据的确定性。

结论

在出现急性呼吸道感染症状的初级保健患者中,使用 C 反应蛋白即时检测作为标准护理的辅助手段可能会减少开具抗生素处方的人数。使用 C 反应蛋白即时检测可能不会影响康复率。进一步研究可能不会显著改变我们关于减少抗生素处方人数的结论,尽管估计的效果大小可能会发生变化。使用 C 反应蛋白即时检测可能不会增加 28 天随访期间的死亡率,但事件数量很少。进行死亡率和住院率记录的研究是在来自低收入和中等收入国家的儿童和患有合并症的老年患者中进行的。未来的研究应重点关注儿童、免疫功能低下的个体以及患有合并症的 80 岁及以上的老年人。需要更多评估 C 反应蛋白决策算法的研究,特别是针对潜在的年龄组差异。需要进一步研究降钙素原和可能的新即时检测生物标志物,以指导初级保健中的抗生素处方。此外,需要验证 C 反应蛋白决策算法,特别是针对潜在的年龄组差异。

相似文献

1
Biomarkers as point-of-care tests to guide prescription of antibiotics in people with acute respiratory infections in primary care.
Cochrane Database Syst Rev. 2022 Oct 17;10(10):CD010130. doi: 10.1002/14651858.CD010130.pub3.
2
Systemic corticosteroids for the treatment of COVID-19: Equity-related analyses and update on evidence.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD014963. doi: 10.1002/14651858.CD014963.pub2.
3
Interventions targeted at women to encourage the uptake of cervical screening.
Cochrane Database Syst Rev. 2021 Sep 6;9(9):CD002834. doi: 10.1002/14651858.CD002834.pub3.
4
Antibiotics for treatment of sore throat in children and adults.
Cochrane Database Syst Rev. 2021 Dec 9;12(12):CD000023. doi: 10.1002/14651858.CD000023.pub5.
5
Antibiotics for the treatment of COVID-19.
Cochrane Database Syst Rev. 2021 Oct 22;10(10):CD015025. doi: 10.1002/14651858.CD015025.
6
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2024 Jan 8;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub8.
7
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2021 Sep 14;9(9):CD010216. doi: 10.1002/14651858.CD010216.pub6.
8
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD010216. doi: 10.1002/14651858.CD010216.pub7.
9
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2025 Jan 29;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub9.
10
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.
Cochrane Database Syst Rev. 2021 Nov 26;11(11):CD013307. doi: 10.1002/14651858.CD013307.pub3.

引用本文的文献

1
Capillary CRP in primary care in France: an observational study.
BMC Prim Care. 2025 Aug 28;26(1):269. doi: 10.1186/s12875-025-02924-9.
3
Diagnosing acute lower respiratory tract infections in out-of-hours services during the COVID-19 pandemic.
Int J Emerg Med. 2025 Jul 30;18(1):138. doi: 10.1186/s12245-025-00942-z.
6
ePOCT+ Rwanda: A Clinical Decision Support Algorithm For Managing Sick Children Below 15 Years of Age in Primary Healthcare Settings.
Rwanda J Med Health Sci. 2025 Mar 31;8(1):148-162. doi: 10.4314/rjmhs.v8i1.13. eCollection 2025 Mar.
7
Characterizing acute respiratory infections in primary care for better management of viral infections.
NPJ Prim Care Respir Med. 2025 Jun 5;35(1):28. doi: 10.1038/s41533-025-00434-w.
9
Clinical Need for Point-of-Care Testing for Diabetes in Clinical and Laboratory Improvement Amendments-Waived Settings.
Clin Diabetes. 2024 Oct 30;43(2):227-239. doi: 10.2337/cd24-0071. eCollection 2025 Spring.
10
Rapid diagnostics to improve antibiotic prescribing in children: one piece of a much larger jigsaw.
Lancet Reg Health Eur. 2025 Jan 21;51:101218. doi: 10.1016/j.lanepe.2025.101218. eCollection 2025 Apr.

本文引用的文献

1
C-Reactive Protein Levels in Children with Acute Bronchiolitis.
Int J Pediatr. 2022 May 23;2022:1311936. doi: 10.1155/2022/1311936. eCollection 2022.
7
Does diagnostic uncertainty increase antibiotic prescribing in primary care?
NPJ Prim Care Respir Med. 2021 Mar 25;31(1):17. doi: 10.1038/s41533-021-00229-9.
8
Health Economic Evidence of Point-of-Care Testing: A Systematic Review.
Pharmacoecon Open. 2021 Jun;5(2):157-173. doi: 10.1007/s41669-020-00248-1. Epub 2021 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验