Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, United Kingdom.
J Biol Chem. 2010 Apr 30;285(18):13942-50. doi: 10.1074/jbc.M109.068908. Epub 2010 Jan 27.
D-ornithine 4,5-aminomutase (OAM) from Clostridium sticklandii converts D-ornithine to 2,4-diaminopentanoic acid by way of radical propagation from an adenosylcobalamin (AdoCbl) to a pyridoxal 5'-phosphate (PLP) cofactor. We have solved OAM crystal structures in different catalytic states that together demonstrate unusual stability of the AdoCbl Co-C bond and that radical catalysis is coupled to large-scale domain motion. The 2.0-A substrate-free enzyme crystal structure reveals the Rossmann domain, harboring the intact AdoCbl cofactor, is tilted toward the edge of the PLP binding triose-phosphate isomerase barrel domain. The PLP forms an internal aldimine link to the Rossmann domain through Lys(629), effectively locking the enzyme in this "open" pre-catalytic conformation. The distance between PLP and 5'-deoxyadenosyl group is 23 A, and large-scale domain movement is thus required prior to radical catalysis. The OAM crystals contain two Rossmann domains within the asymmetric unit that are unconstrained by the crystal lattice. Surprisingly, the binding of various ligands to OAM crystals (in an oxygen-free environment) leads to transimination in the absence of significant reorientation of the Rossmann domains. In contrast, when performed under aerobic conditions, this leads to extreme disorder in the latter domains correlated with the loss of the 5'-deoxyadenosyl group. Our data indicate turnover and hence formation of the "closed" conformation is occurring within OAM crystals, but that the equilibrium is poised toward the open conformation. We propose that substrate binding induces large-scale domain motion concomitant with a reconfiguration of the 5'-deoxyadenosyl group, triggering radical catalysis in OAM.
来自 sticklandii 的 D-鸟氨酸 4,5-氨基变位酶 (OAM) 通过从腺嘌呤钴胺素 (AdoCbl) 到吡哆醛 5'-磷酸 (PLP) 辅因子的自由基传播,将 D-鸟氨酸转化为 2,4-二氨基戊酸。我们已经解决了不同催化状态下的 OAM 晶体结构,这些结构共同证明了 AdoCbl Co-C 键的不寻常稳定性,并且自由基催化与大规模结构域运动偶联。2.0-A 无底物酶晶体结构揭示了包含完整 AdoCbl 辅因子的 Rossmann 结构域向 PLP 结合三糖磷酸异构酶桶状结构域边缘倾斜。PLP 通过 Lys(629)与 Rossmann 结构域形成内部亚胺键,有效地将酶锁定在这种“打开”的预催化构象中。PLP 和 5'-脱氧腺苷基团之间的距离为 23 A,因此在进行自由基催化之前需要进行大规模的结构域运动。OAM 晶体在不对称单元中包含两个 Rossmann 结构域,不受晶体晶格的限制。令人惊讶的是,在无氧环境下,各种配体与 OAM 晶体的结合会导致 transimination,而不会导致 Rossmann 结构域的明显重排。相比之下,当在有氧条件下进行时,这会导致后者结构域极度无序,与 5'-脱氧腺苷基团的丢失相关。我们的数据表明,周转率,因此“封闭”构象的形成正在 OAM 晶体中发生,但平衡倾向于开放构象。我们提出,底物结合诱导大规模结构域运动,同时伴随着 5'-脱氧腺苷基团的重新配置,触发 OAM 中的自由基催化。