Suppr超能文献

大规模的结构域动力学和腺苷钴胺素重排调控鸟氨酸 4,5-氨基甲酰转移酶的自由基催化。

Large-scale domain dynamics and adenosylcobalamin reorientation orchestrate radical catalysis in ornithine 4,5-aminomutase.

机构信息

Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, United Kingdom.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13942-50. doi: 10.1074/jbc.M109.068908. Epub 2010 Jan 27.

Abstract

D-ornithine 4,5-aminomutase (OAM) from Clostridium sticklandii converts D-ornithine to 2,4-diaminopentanoic acid by way of radical propagation from an adenosylcobalamin (AdoCbl) to a pyridoxal 5'-phosphate (PLP) cofactor. We have solved OAM crystal structures in different catalytic states that together demonstrate unusual stability of the AdoCbl Co-C bond and that radical catalysis is coupled to large-scale domain motion. The 2.0-A substrate-free enzyme crystal structure reveals the Rossmann domain, harboring the intact AdoCbl cofactor, is tilted toward the edge of the PLP binding triose-phosphate isomerase barrel domain. The PLP forms an internal aldimine link to the Rossmann domain through Lys(629), effectively locking the enzyme in this "open" pre-catalytic conformation. The distance between PLP and 5'-deoxyadenosyl group is 23 A, and large-scale domain movement is thus required prior to radical catalysis. The OAM crystals contain two Rossmann domains within the asymmetric unit that are unconstrained by the crystal lattice. Surprisingly, the binding of various ligands to OAM crystals (in an oxygen-free environment) leads to transimination in the absence of significant reorientation of the Rossmann domains. In contrast, when performed under aerobic conditions, this leads to extreme disorder in the latter domains correlated with the loss of the 5'-deoxyadenosyl group. Our data indicate turnover and hence formation of the "closed" conformation is occurring within OAM crystals, but that the equilibrium is poised toward the open conformation. We propose that substrate binding induces large-scale domain motion concomitant with a reconfiguration of the 5'-deoxyadenosyl group, triggering radical catalysis in OAM.

摘要

来自 sticklandii 的 D-鸟氨酸 4,5-氨基变位酶 (OAM) 通过从腺嘌呤钴胺素 (AdoCbl) 到吡哆醛 5'-磷酸 (PLP) 辅因子的自由基传播,将 D-鸟氨酸转化为 2,4-二氨基戊酸。我们已经解决了不同催化状态下的 OAM 晶体结构,这些结构共同证明了 AdoCbl Co-C 键的不寻常稳定性,并且自由基催化与大规模结构域运动偶联。2.0-A 无底物酶晶体结构揭示了包含完整 AdoCbl 辅因子的 Rossmann 结构域向 PLP 结合三糖磷酸异构酶桶状结构域边缘倾斜。PLP 通过 Lys(629)与 Rossmann 结构域形成内部亚胺键,有效地将酶锁定在这种“打开”的预催化构象中。PLP 和 5'-脱氧腺苷基团之间的距离为 23 A,因此在进行自由基催化之前需要进行大规模的结构域运动。OAM 晶体在不对称单元中包含两个 Rossmann 结构域,不受晶体晶格的限制。令人惊讶的是,在无氧环境下,各种配体与 OAM 晶体的结合会导致 transimination,而不会导致 Rossmann 结构域的明显重排。相比之下,当在有氧条件下进行时,这会导致后者结构域极度无序,与 5'-脱氧腺苷基团的丢失相关。我们的数据表明,周转率,因此“封闭”构象的形成正在 OAM 晶体中发生,但平衡倾向于开放构象。我们提出,底物结合诱导大规模结构域运动,同时伴随着 5'-脱氧腺苷基团的重新配置,触发 OAM 中的自由基催化。

相似文献

1
Large-scale domain dynamics and adenosylcobalamin reorientation orchestrate radical catalysis in ornithine 4,5-aminomutase.
J Biol Chem. 2010 Apr 30;285(18):13942-50. doi: 10.1074/jbc.M109.068908. Epub 2010 Jan 27.
2
A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes.
J Biol Chem. 2014 Dec 5;289(49):34161-74. doi: 10.1074/jbc.M114.590471. Epub 2014 Sep 11.
3
A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15870-5. doi: 10.1073/pnas.0407074101. Epub 2004 Oct 28.
4
Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase.
J Biol Chem. 2008 Dec 12;283(50):34615-25. doi: 10.1074/jbc.M807911200. Epub 2008 Oct 22.
8
Role of histidine 225 in adenosylcobalamin-dependent ornithine 4,5-aminomutase.
Bioorg Chem. 2012 Feb;40(1):39-47. doi: 10.1016/j.bioorg.2011.08.003. Epub 2011 Aug 16.
10
Optimal electrostatic interactions between substrate and protein are essential for radical chemistry in ornithine 4,5-aminomutase.
Biochim Biophys Acta Proteins Proteom. 2017 Aug;1865(8):1077-1084. doi: 10.1016/j.bbapap.2017.05.011. Epub 2017 May 18.

引用本文的文献

1
2
Customising the plunge-freezing workflow for challenging conditions.
Faraday Discuss. 2022 Nov 8;240(0):44-54. doi: 10.1039/d2fd00060a.
3
The Nitrogen Atom of Vitamin B Is Essential for the Catalysis of Radical Aminomutases.
Int J Mol Sci. 2022 May 6;23(9):5210. doi: 10.3390/ijms23095210.
5
Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme.
mBio. 2019 Sep 24;10(5):e01303-19. doi: 10.1128/mBio.01303-19.
6
Orchestrated Domain Movement in Catalysis by Cytochrome P450 Reductase.
Sci Rep. 2017 Aug 29;7(1):9741. doi: 10.1038/s41598-017-09840-8.
8
A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes.
J Biol Chem. 2014 Dec 5;289(49):34161-74. doi: 10.1074/jbc.M114.590471. Epub 2014 Sep 11.
9
A mechanochemical switch to control radical intermediates.
Biochemistry. 2014 Jun 17;53(23):3830-8. doi: 10.1021/bi500050k. Epub 2014 Jun 6.

本文引用的文献

2
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
3
Mechanism of radical-based catalysis in the reaction catalyzed by adenosylcobalamin-dependent ornithine 4,5-aminomutase.
J Biol Chem. 2008 Dec 12;283(50):34615-25. doi: 10.1074/jbc.M807911200. Epub 2008 Oct 22.
4
A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.
Nature. 2007 Dec 6;450(7171):913-6. doi: 10.1038/nature06407. Epub 2007 Nov 18.
5
Reaction of adenosylcobalamin-dependent glutamate mutase with 2-thiolglutarate.
Biochemistry. 2006 Sep 26;45(38):11650-7. doi: 10.1021/bi061067n.
6
An NMR perspective on enzyme dynamics.
Chem Rev. 2006 Aug;106(8):3055-79. doi: 10.1021/cr050312q.
7
Scaling and assessment of data quality.
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82. doi: 10.1107/S0907444905036693. Epub 2005 Dec 14.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15870-5. doi: 10.1073/pnas.0407074101. Epub 2004 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验