Suppr超能文献

渗透胁迫下大肠杆菌中的细胞质蛋白流动性

Cytoplasmic protein mobility in osmotically stressed Escherichia coli.

作者信息

Konopka Michael C, Sochacki Kem A, Bratton Benjamin P, Shkel Irina A, Record M Thomas, Weisshaar James C

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

J Bacteriol. 2009 Jan;191(1):231-7. doi: 10.1128/JB.00536-08. Epub 2008 Oct 24.

Abstract

Facile diffusion of globular proteins within a cytoplasm that is dense with biopolymers is essential to normal cellular biochemical activity and growth. Remarkably, Escherichia coli grows in minimal medium over a wide range of external osmolalities (0.03 to 1.8 osmol). The mean cytoplasmic biopolymer volume fraction ((phi)) for such adapted cells ranges from 0.16 at 0.10 osmol to 0.36 at 1.45 osmol. For cells grown at 0.28 osmol, a similar phi range is obtained by plasmolysis (sudden osmotic upshift) using NaCl or sucrose as the external osmolyte, after which the only available cellular response is passive loss of cytoplasmic water. Here we measure the effective axial diffusion coefficient of green fluorescent protein (D(GFP)) in the cytoplasm of E. coli cells as a function of (phi) for both plasmolyzed and adapted cells. For plasmolyzed cells, the median D(GFP) (D(GFP)(m)) decreases by a factor of 70 as (phi) increases from 0.16 to 0.33. In sharp contrast, for adapted cells, D(GFP)(m) decreases only by a factor of 2.1 as (phi) increases from 0.16 to 0.36. Clearly, GFP diffusion is not determined by (phi) alone. By comparison with quantitative models, we show that the data cannot be explained by crowding theory. We suggest possible underlying causes of this surprising effect and further experiments that will help choose among competing hypotheses. Recovery of the ability of proteins to diffuse in the cytoplasm after plasmolysis may well be a key determinant of the time scale of the recovery of growth.

摘要

球状蛋白质在充满生物聚合物的细胞质中能轻松扩散,这对正常的细胞生化活动和生长至关重要。值得注意的是,大肠杆菌能在广泛的外部渗透压范围(0.03至1.8渗透压)的基本培养基中生长。这类适应后的细胞的平均细胞质生物聚合物体积分数((phi))范围从0.10渗透压下的0.16到1.45渗透压下的0.36。对于在0.28渗透压下生长的细胞,通过使用NaCl或蔗糖作为外部渗透剂进行质壁分离(突然的渗透压升高)可获得类似的(phi)范围,在此之后,细胞唯一可用的反应是细胞质水的被动流失。在这里,我们测量了绿色荧光蛋白(D(GFP))在大肠杆菌细胞质中的有效轴向扩散系数,它是质壁分离细胞和适应细胞的(phi)的函数。对于质壁分离细胞,随着(phi)从0.16增加到0.33,D(GFP)的中位数(D(GFP)(m))降低了70倍。形成鲜明对比的是,对于适应细胞,随着(phi)从0.16增加到0.36,D(GFP)(m)仅降低了2.1倍。显然,GFP的扩散并非仅由(phi)决定。通过与定量模型比较,我们表明这些数据无法用拥挤理论来解释。我们提出了这种惊人效应可能的潜在原因以及有助于在相互竞争的假设中做出选择的进一步实验。质壁分离后蛋白质在细胞质中扩散能力的恢复很可能是生长恢复时间尺度的关键决定因素。

相似文献

1
Cytoplasmic protein mobility in osmotically stressed Escherichia coli.
J Bacteriol. 2009 Jan;191(1):231-7. doi: 10.1128/JB.00536-08. Epub 2008 Oct 24.
3
Crowding and confinement effects on protein diffusion in vivo.
J Bacteriol. 2006 Sep;188(17):6115-23. doi: 10.1128/JB.01982-05.
6
Evaluation of pulsed-FRAP and conventional-FRAP for determination of protein mobility in prokaryotic cells.
PLoS One. 2011;6(9):e25664. doi: 10.1371/journal.pone.0025664. Epub 2011 Sep 28.
7
Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress.
J Bacteriol. 2019 Apr 24;201(10). doi: 10.1128/JB.00708-18. Print 2019 May 15.
8
Single-molecule study of molecular mobility in the cytoplasm of Escherichia coli.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021907. doi: 10.1103/PhysRevE.86.021907. Epub 2012 Aug 9.
9
Protein diffusion in the periplasm of E. coli under osmotic stress.
Biophys J. 2011 Jan 5;100(1):22-31. doi: 10.1016/j.bpj.2010.11.044.
10
Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress.
Mol Microbiol. 2007 May;64(3):858-71. doi: 10.1111/j.1365-2958.2007.05705.x.

引用本文的文献

1
Label-Free Quantification of Protein Density in Living Cells.
Curr Protoc. 2025 Apr;5(4):e70130. doi: 10.1002/cpz1.70130.
2
Protein translation can fluidize bacterial cytoplasm.
PNAS Nexus. 2024 Nov 22;3(12):pgae532. doi: 10.1093/pnasnexus/pgae532. eCollection 2024 Dec.
3
Measurement of protein concentration in bacteria and small organelles under a light transmission microscope.
J Mol Recognit. 2024 Sep;37(5):e3099. doi: 10.1002/jmr.3099. Epub 2024 Jun 25.
4
Glycogen phase separation drives macromolecular rearrangement and asymmetric division in .
bioRxiv. 2024 Apr 20:2024.04.19.590186. doi: 10.1101/2024.04.19.590186.
5
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.
Chem Rev. 2024 Feb 28;124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622. Epub 2024 Feb 8.
6
How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells.
PLoS Comput Biol. 2023 Dec 20;19(12):e1011720. doi: 10.1371/journal.pcbi.1011720. eCollection 2023 Dec.
7
Physicochemical homeostasis in bacteria.
FEMS Microbiol Rev. 2023 Jul 5;47(4). doi: 10.1093/femsre/fuad033.
8
Optimal density of bacterial cells.
PLoS Comput Biol. 2023 Jun 12;19(6):e1011177. doi: 10.1371/journal.pcbi.1011177. eCollection 2023 Jun.
10
Exposure to stressors and antimicrobials induces cell-autonomous ultrastructural heterogeneity of an intracellular bacterial pathogen.
Front Cell Infect Microbiol. 2022 Nov 15;12:963354. doi: 10.3389/fcimb.2022.963354. eCollection 2022.

本文引用的文献

1
Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy.
J Bacteriol. 2008 Jun;190(12):4225-32. doi: 10.1128/JB.00132-08. Epub 2008 Apr 11.
2
Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm.
Biophys J. 2008 May 15;94(10):3748-59. doi: 10.1529/biophysj.107.116053. Epub 2008 Jan 30.
3
Probing transcription factor dynamics at the single-molecule level in a living cell.
Science. 2007 May 25;316(5828):1191-4. doi: 10.1126/science.1141967.
4
Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress.
Mol Microbiol. 2007 May;64(3):858-71. doi: 10.1111/j.1365-2958.2007.05705.x.
6
Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans.
J Struct Biol. 2006 Nov;156(2):311-9. doi: 10.1016/j.jsb.2006.05.014. Epub 2006 Jul 8.
7
Crowding and confinement effects on protein diffusion in vivo.
J Bacteriol. 2006 Sep;188(17):6115-23. doi: 10.1128/JB.01982-05.
8
Diffusion of green fluorescent protein in three cell environments in Escherichia coli.
J Bacteriol. 2006 May;188(10):3442-8. doi: 10.1128/JB.188.10.3442-3448.2006.
9
Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5332-7. doi: 10.1073/pnas.0600828103. Epub 2006 Mar 27.
10
Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase.
J Struct Biol. 2006 Feb;153(2):160-75. doi: 10.1016/j.jsb.2005.10.011. Epub 2005 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验