Bera Palash, Wasim Abdul, Bakshi Somenath, Mondal Jagannath
Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India.
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom.
PNAS Nexus. 2024 Nov 22;3(12):pgae532. doi: 10.1093/pnasnexus/pgae532. eCollection 2024 Dec.
The cytoplasm of bacterial cells is densely packed with highly polydisperse macromolecules that exhibit size-dependent glassy dynamics. Recent research has revealed that metabolic activities in living cells can counteract the glassy nature of these macromolecules, allowing the cell to maintain critical fluidity for its growth and function. While it has been proposed that the crowded cytoplasm is responsible for this glassy behavior, a detailed analysis of the size-dependent nature of the glassy dynamics and an explanation for how cellular activity induces its fluidization remains elusive. Here, we use a combination of computational models and targeted experiments to show that entropic segregation of the protein synthesis machinery from the chromosomal DNA causes size-dependent spatial organization of molecules within the cell, and the resultant crowding leads to size-dependent glassy dynamics. Furthermore, Brownian dynamics simulations of this in silico system supports a new hypothesis: protein synthesis in living cells contributes to the metabolism-dependent fluidization of the cytoplasm. The main protein synthesis machinery, ribosomes, frequently shift between fast and slow diffusive states. These states correspond to the independent movement of ribosomal subunits and the actively translating ribosome chains called polysomes, respectively. Our simulations demonstrate that the frequent transitions of the numerous ribosomes, which constitute a significant portion of the cell proteome, greatly enhance the mobility of other macromolecules within the bacterial cytoplasm. Considering that ribosomal protein synthesis is the largest consumer of ATP in growing bacterial cells, the translation process can serve as the primary mechanism for fluidizing the cytoplasm in metabolically active cells.
细菌细胞的细胞质中密集地充满了高度多分散的大分子,这些大分子表现出与大小相关的玻璃态动力学。最近的研究表明,活细胞中的代谢活动可以抵消这些大分子的玻璃态性质,使细胞能够维持其生长和功能所需的关键流动性。虽然有人提出拥挤的细胞质是这种玻璃态行为的原因,但对玻璃态动力学的大小依赖性本质进行详细分析以及解释细胞活动如何诱导其流化仍然难以捉摸。在这里,我们结合计算模型和有针对性的实验表明,蛋白质合成机制与染色体DNA的熵分离导致细胞内分子的大小依赖性空间组织,由此产生的拥挤导致大小依赖性玻璃态动力学。此外,对这个计算机模拟系统的布朗动力学模拟支持了一个新的假设:活细胞中的蛋白质合成有助于细胞质的代谢依赖性流化。主要的蛋白质合成机制,即核糖体,经常在快速和慢速扩散状态之间转换。这些状态分别对应于核糖体亚基的独立运动和称为多聚核糖体的活跃翻译核糖体链。我们的模拟表明,构成细胞蛋白质组很大一部分的众多核糖体的频繁转变极大地增强了细菌细胞质内其他大分子的流动性。考虑到核糖体蛋白质合成是生长中的细菌细胞中ATP的最大消耗者,翻译过程可以作为代谢活跃细胞中细胞质流化的主要机制。