Grote Jana, Jost Günter, Labrenz Matthias, Herndl Gerhard J, Jürgens Klaus
Leibniz Institute for Baltic Sea Research, Section Biology, Seestrasse 15, 18119 Rostock-Warnemünde, Germany.
Appl Environ Microbiol. 2008 Dec;74(24):7546-51. doi: 10.1128/AEM.01186-08. Epub 2008 Oct 24.
Recent studies have indicated that chemoautotrophic Epsilonproteobacteria might play an important role, especially as anaerobic or microaerophilic dark CO(2)-fixing organisms, in marine pelagic redoxclines. However, knowledge of their distribution and abundance as actively CO(2)-fixing microorganisms in pelagic redoxclines is still deficient. We determined the contribution of Epsilonproteobacteria to dark CO(2) fixation in the sulfidic areas of central Baltic Sea and Black Sea redoxclines by combining catalyzed reporter deposition-fluorescence in situ hybridization with microautoradiography using [(14)C]bicarbonate and compared it to the total prokaryotic chemoautotrophic activity. In absolute numbers, up to 3 x 10(5) (14)CO(2)-fixing prokaryotic cells ml(-1) were enumerated in the redoxcline of the central Baltic Sea and up to 9 x 10(4) (14)CO(2)-fixing cells ml(-1) were enumerated in the Black Sea redoxcline, corresponding to 29% and 12%, respectively, of total cell abundance. (14)CO(2)-incorporating cells belonged exclusively to the domain Bacteria. Among these, members of the Epsilonproteobacteria were approximately 70% of the cells in the central Baltic Sea and up to 100% in the Black Sea. For the Baltic Sea, the Sulfurimonas subgroup GD17, previously assumed to be involved in autotrophic denitrification, was the most dominant CO(2)-fixing group. In conclusion, Epsilonproteobacteria were found to be mainly responsible for chemoautotrophic activity in the dark CO(2) fixation maxima of the Black Sea and central Baltic Sea redoxclines. These Epsilonproteobacteria might be relevant in similar habitats of the world's oceans, where high dark CO(2) fixation rates have been measured.
最近的研究表明,化学自养型ε-变形菌可能发挥重要作用,尤其是作为厌氧或微需氧的黑暗二氧化碳固定生物,在海洋远洋氧化还原梯度带中。然而,关于它们作为远洋氧化还原梯度带中活跃的二氧化碳固定微生物的分布和丰度的知识仍然不足。我们通过将催化报告沉积-荧光原位杂交与使用[¹⁴C]碳酸氢盐的微放射自显影相结合,确定了ε-变形菌对波罗的海中部和黑海氧化还原梯度带硫化区域黑暗二氧化碳固定的贡献,并将其与原核生物的总化学自养活性进行了比较。在绝对数量上,在波罗的海中部的氧化还原梯度带中,每毫升计数到高达3×10⁵个¹⁴CO₂固定原核细胞,在黑海氧化还原梯度带中每毫升计数到高达9×10⁴个¹⁴CO₂固定细胞,分别对应于总细胞丰度的29%和12%。¹⁴CO₂掺入细胞仅属于细菌域。其中,ε-变形菌成员在波罗的海中部约占细胞的70%,在黑海高达100%。对于波罗的海,先前假定参与自养反硝化作用的硫单胞菌亚群GD17是最主要的二氧化碳固定群体。总之,发现ε-变形菌主要负责黑海和波罗的海中部氧化还原梯度带黑暗二氧化碳固定最大值处的化学自养活性。这些ε-变形菌可能在世界海洋中类似的栖息地中具有相关性,在这些栖息地中已测量到高黑暗二氧化碳固定率。