Suppr超能文献

群落动态和宏基因组分析揭示了拟杆菌门在广泛的酶促降解墨角藻细胞壁中的作用。

Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation.

作者信息

Macdonald Jascha F H, Pérez-García Pablo, Schneider Yannik K-H, Blümke Patrick, Indenbirken Daniela, Andersen Jeanette H, Krohn Ines, Streit Wolfgang R

机构信息

Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany.

出版信息

Sci Rep. 2024 May 3;14(1):10237. doi: 10.1038/s41598-024-60978-8.

Abstract

Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.

摘要

随着海洋有机物作为一种可持续资源的价值日益凸显,微生物对藻类细胞壁碳水化合物的酶促降解受到了越来越多的研究。海洋生态系统中碳的归宿部分取决于这些降解过程。在本研究中,我们观察了墨角藻(Fucus vesiculosus)在25天富集培养中的微生物群落动态,培养导致褐藻部分降解。微生物群落分析表明,假单胞菌门是主要的细菌类群,以海单胞菌属(Marinomonas)和弧菌属(Vibrio)为主。更重要的是,基于宏基因组的特定糖基水解酶和硫酸酯酶的隐马尔可夫模型确定拟杆菌门是细胞壁降解潜力最高的门类,尽管其丰度较低。为了进行实验验证,我们克隆、表达并对两种α-L-岩藻糖苷酶FUJM18和FUJM20进行了生化表征。虽然蛋白质结构预测表明它们与芽孢杆菌门起源的相似度最高,但蛋白质-蛋白质比对仅显示与已定义的拟杆菌门蛋白质有微弱的相似性。这两种酶在高温下都具有显著活性,是潜在的用于大规模藻类破坏的合成酶混合物的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f32/11068906/0d8bfec889ee/41598_2024_60978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验