Cuerrier Charles M, Benoit Martin, Guillemette Gaétan, Gobeil Fernand, Grandbois Michel
Département de Pharmacologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
Pflugers Arch. 2009 Apr;457(6):1361-72. doi: 10.1007/s00424-008-0596-0. Epub 2008 Oct 25.
Physiological processes, occurring as a result of specific receptor stimulation, are generally assessed via molecular biology techniques and microscopic approaches with the involvement of specific molecular markers. The recent progress in experimental approaches, allowing the mechanical characterization of individual biological entities, now makes it possible to address cellular processes occurring in individual cells as a result of their stimulation by hormones. Here, we demonstrate that the atomic force microscope (AFM) can be used to mechanically probe individual cells following the activation of the angiotensin-1 receptor, a receptor well known for its role in cell homeostasis regulation. Our goal is to demonstrate that the measurement of cantilever deflection can be used to quantify in real time the mechanical and morphological cell activity associated with the activation of the receptor. By combining the AFM with time-lapse sequences of phase-contrast and confocal micrographs, we show that the angiotensin-1 receptor stimulation with 100 nM angiotensin II produces an actin-dependent contractile response with an amplitude of 262 +/- 52 nm. We validated the mechanical origin of the responses by measuring the elastic modulus of the cell from indentation experiments performed at 30-s intervals. Additionally, nanoscaled height fluctuations of the cell membrane occurring after the initial contraction response could be attributed to an increased actin cytoskeleton activity and remodeling detected by confocal microscopy. Finally, by using inhibitors for specific elements of the angiotensin-1 receptor signaling pathways, we demonstrate that AFM real-time height monitoring allows a read out of the molecular processes responsible for the cell mechanical response.
由于特定受体刺激而发生的生理过程,通常通过分子生物学技术和微观方法,并借助特定分子标记来评估。实验方法的最新进展使得对单个生物实体进行力学表征成为可能,现在可以研究单个细胞因激素刺激而发生的细胞过程。在此,我们证明原子力显微镜(AFM)可用于在血管紧张素-1受体激活后对单个细胞进行力学探测,血管紧张素-1受体在细胞稳态调节中的作用广为人知。我们的目标是证明测量悬臂梁的偏转可用于实时量化与受体激活相关的细胞力学和形态学活性。通过将AFM与相差显微镜和共聚焦显微镜的延时序列相结合,我们发现用100 nM血管紧张素II刺激血管紧张素-1受体可产生幅度为262±52 nm的肌动蛋白依赖性收缩反应。我们通过每隔30秒进行一次压痕实验测量细胞的弹性模量,验证了这些反应的力学起源。此外,初始收缩反应后细胞膜出现的纳米级高度波动可归因于共聚焦显微镜检测到肌动蛋白细胞骨架活性增加和重塑。最后,通过使用血管紧张素-1受体信号通路特定元件的抑制剂,我们证明AFM实时高度监测能够读出负责细胞力学反应的分子过程。