Pfleger Brian F, Kim Youngchang, Nusca Tyler D, Maltseva Natalia, Lee Jung Yeop, Rath Christopher M, Scaglione Jamie B, Janes Brian K, Anderson Erica C, Bergman Nicholas H, Hanna Philip C, Joachimiak Andrzej, Sherman David H
Life Sciences Institute and Departments of Medicinal Chemistry and Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17133-8. doi: 10.1073/pnas.0808118105. Epub 2008 Oct 27.
Petrobactin, a virulence-associated siderophore produced by Bacillus anthracis, chelates ferric iron through the rare 3,4-isomer of dihydroxybenzoic acid (3,4-DHBA). Most catechol siderophores, including bacillibactin and enterobactin, use 2,3-DHBA as a biosynthetic subunit. Significantly, siderocalin, a factor involved in human innate immunity, sequesters ferric siderophores bearing the more typical 2,3-DHBA moiety, thereby impeding uptake of iron by the pathogenic bacterial cell. In contrast, the unusual 3,4-DHBA component of petrobactin renders the siderocalin system incapable of obstructing bacterial iron uptake. Although recent genetic and biochemical studies have revealed selected early steps in petrobactin biosynthesis, the origin of 3,4-DHBA as well as the function of the protein encoded by the final gene in the B. anthracis siderophore biosynthetic (asb) operon, asbF (BA1986), has remained unclear. In this study we demonstrate that 3,4-DHBA is produced through conversion of the common bacterial metabolite 3-dehydroshikimate (3-DHS) by AsbF-a 3-DHS dehydratase. Elucidation of the cocrystal structure of AsbF with 3,4-DHBA, in conjunction with a series of biochemical studies, supports a mechanism in which an enolate intermediate is formed through the action of this 3-DHS dehydratase metalloenzyme. Structural and functional parallels are evident between AsbF and other enzymes within the xylose isomerase TIM-barrel family. Overall, these data indicate that microbial species shown to possess homologs of AsbF may, like B. anthracis, also rely on production of the unique 3,4-DHBA metabolite to achieve full viability in the environment or virulence within the host.
炭疽杆菌产生的与毒力相关的铁载体杆菌铁载体,通过罕见的二羟基苯甲酸(3,4-DHBA)的3,4-异构体螯合三价铁。大多数儿茶酚铁载体,包括芽孢杆菌铁载体和肠杆菌铁载体,使用2,3-DHBA作为生物合成亚基。值得注意的是,参与人类先天免疫的铁调素会隔离带有更典型的2,3-DHBA部分的三价铁载体,从而阻碍致病细菌细胞对铁的摄取。相比之下,杆菌铁载体中不寻常的3,4-DHBA成分使铁调素系统无法阻碍细菌对铁的摄取。尽管最近的遗传学和生物化学研究揭示了杆菌铁载体生物合成中选定的早期步骤,但3,4-DHBA的来源以及炭疽杆菌铁载体生物合成(asb)操纵子中最后一个基因asbF(BA1986)编码的蛋白质的功能仍不清楚。在本研究中,我们证明3,4-DHBA是通过AsbF(一种3-脱氢莽草酸脱水酶)将常见细菌代谢物3-脱氢莽草酸(3-DHS)转化产生的。AsbF与3,4-DHBA的共晶体结构的阐明,结合一系列生物化学研究,支持了一种机制,即通过这种3-DHS脱水酶金属酶的作用形成烯醇化物中间体。AsbF与木糖异构酶TIM桶家族中的其他酶之间存在明显的结构和功能相似性。总体而言,这些数据表明,显示拥有AsbF同源物的微生物物种可能像炭疽杆菌一样,也依赖于独特的3,4-DHBA代谢物的产生,以在环境中实现完全生存能力或在宿主体内实现毒力。