Suppr超能文献

Identification of rhubarbs by using NIR spectrometry and temperature-constrained cascade correlation networks.

作者信息

Wang Fengxia, Zhang Zhuoyong, Cui Xiujun, de B Harrington Peter

机构信息

Department of Chemistry, Capital Normal University, Beijing 10037, PR China.

出版信息

Talanta. 2006 Dec 15;70(5):1170-6. doi: 10.1016/j.talanta.2006.03.008. Epub 2006 Apr 27.

Abstract

Temperature-constrained cascade correlation networks (TCCCNs) were used to identify powdered rhubarbs based on their near-infrared spectra. Different network configurations that used multiple network models with single output (Uni-TCCCN) and single networks with multiple outputs (Multi-TCCCN) were compared. Comparative studies were made by using Latin-partitions and leave-one-out cross-validation methods. Results showed that multiple networks with single output predicted generally better than single network with multiple outputs. Better results with TCCCN models were obtained compared with conventional back propagation neural networks (BPNNs). The effects of parameters on correct identification and parameter optimizations were discussed in detail. With optimized neural network training parameters, NIR spectra from powdered rhubarb samples were classified by a TCCCN model with 100% accuracy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验