Suppr超能文献

嗜热栖热菌中的原核沉默(psi)RNA

Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus.

作者信息

Hale Caryn, Kleppe Kyle, Terns Rebecca M, Terns Michael P

机构信息

Department of Biochemistry, University of Georgia, Athens, Georgia 30602, USA.

出版信息

RNA. 2008 Dec;14(12):2572-9. doi: 10.1261/rna.1246808. Epub 2008 Oct 29.

Abstract

In many prokaryotes, noncoding RNAs that arise from the clustered regularly interspaced short palindromic repeat (CRISPR) loci are now thought to mediate defense against viruses and other molecular invaders by an RNAi-like pathway. CRISPR loci contain multiple short regions of similarity to invader sequences separated by short repeat sequences, and are associated with resistance to infection by corresponding viruses. It is hypothesized that RNAs derived from these regions, termed prokaryotic silencing (psi)RNAs, guide Slicer-like complexes of partner proteins to destroy invader nucleic acids. Here we have investigated CRISPR-derived RNAs in the archaeon Pyrococcus furiosus. Northern analysis revealed multiple RNA species consistent with a proposed biogenesis pathway that includes full-length CRISPR locus transcripts and intermediates generated by endonucleolytic cleavages within the repeat sequences. However, our results identify the principal products of the CRISPR loci as small psiRNAs comprised primarily of invader-targeting sequence with perhaps only 5-10 nucleotides of CRISPR repeat sequence. These RNAs are the most abundant CRISPR RNA species in P. furiosus and are likely the guides for the effector complexes of the proposed prokaryotic RNAi (pRNAi) system. We analyzed cell-free extracts fractionated under non-denaturing conditions and found that the various CRISPR RNA species are components of distinct RNA-protein complexes, including at least two complexes that contain mature-length psiRNAs. Finally, RNAs are produced from all seven CRISPR loci present in the P. furiosus genome, and interestingly, the most recently acquired psiRNAs encoded proximal to the leader sequence of a CRISPR locus appear to be the most abundant.

摘要

在许多原核生物中,现在认为源自成簇规律间隔短回文重复序列(CRISPR)位点的非编码RNA通过类RNA干扰途径介导对病毒和其他分子入侵者的防御。CRISPR位点包含多个与入侵者序列相似的短区域,这些区域被短重复序列隔开,并与对相应病毒感染的抗性相关。据推测,源自这些区域的RNA,称为原核沉默(psi)RNA,可引导伴侣蛋白的类切割复合物破坏入侵者的核酸。在这里,我们研究了古菌激烈火球菌中源自CRISPR的RNA。Northern分析揭示了多种RNA种类,这与一种推测的生物发生途径一致,该途径包括全长CRISPR位点转录本以及由重复序列内的内切核酸酶切割产生的中间体。然而,我们的结果确定CRISPR位点的主要产物是小psiRNA,其主要由靶向入侵者的序列组成,可能仅含有5 - 10个核苷酸的CRISPR重复序列。这些RNA是激烈火球菌中最丰富的CRISPR RNA种类,并且可能是所提出的原核RNA干扰(pRNAi)系统效应复合物的引导物。我们分析了在非变性条件下分级分离的无细胞提取物,发现各种CRISPR RNA种类是不同RNA - 蛋白质复合物的组成部分,包括至少两种含有成熟长度psiRNA的复合物。最后,RNA由激烈火球菌基因组中存在的所有七个CRISPR位点产生,有趣的是,在CRISPR位点前导序列近端编码的最近获得的psiRNA似乎最为丰富。

相似文献

1
Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus.
RNA. 2008 Dec;14(12):2572-9. doi: 10.1261/rna.1246808. Epub 2008 Oct 29.
2
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.
Cell. 2009 Nov 25;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
3
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056.
4
Binding and cleavage of CRISPR RNA by Cas6.
RNA. 2010 Nov;16(11):2181-8. doi: 10.1261/rna.2230110. Epub 2010 Sep 30.
5
DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.
Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30.
6
Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.
RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22.
7
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes.
Genes Dev. 2008 Dec 15;22(24):3489-96. doi: 10.1101/gad.1742908.
8
Structure of an RNA silencing complex of the CRISPR-Cas immune system.
Mol Cell. 2013 Oct 10;52(1):146-52. doi: 10.1016/j.molcel.2013.09.008.
9
RNAi: prokaryotes get in on the act.
Cell. 2009 Nov 25;139(5):863-5. doi: 10.1016/j.cell.2009.11.018.
10
Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs.
Mol Cell. 2012 Feb 10;45(3):292-302. doi: 10.1016/j.molcel.2011.10.023. Epub 2012 Jan 5.

引用本文的文献

3
Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes.
Nucleic Acids Res. 2024 Sep 23;52(17):10595-10606. doi: 10.1093/nar/gkae597.
4
CRISPR/Cas9 system and its applications in nervous system diseases.
Genes Dis. 2023 Apr 13;11(2):675-686. doi: 10.1016/j.gendis.2023.03.017. eCollection 2024 Mar.
6
Host nucleases generate prespacers for primed adaptation in the type I-E CRISPR-Cas system.
Sci Adv. 2022 Nov 25;8(47):eabn8650. doi: 10.1126/sciadv.abn8650.
7
The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
Biochem Soc Trans. 2022 Oct 31;50(5):1353-1364. doi: 10.1042/BST20220289.
8
A new family of CRISPR-type V nucleases with C-rich PAM recognition.
EMBO Rep. 2022 Dec 6;23(12):e55481. doi: 10.15252/embr.202255481. Epub 2022 Oct 21.
9
Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system.
Nucleic Acids Res. 2022 Feb 22;50(3):1661-1672. doi: 10.1093/nar/gkab1299.
10
CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases.
Pharmaceuticals (Basel). 2021 Nov 17;14(11):1171. doi: 10.3390/ph14111171.

本文引用的文献

2
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.
J Bacteriol. 2008 Feb;190(4):1390-400. doi: 10.1128/JB.01412-07. Epub 2007 Dec 7.
3
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus.
J Bacteriol. 2008 Feb;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub 2007 Dec 7.
4
The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race.
Science. 2007 Nov 2;318(5851):761-4. doi: 10.1126/science.1146484.
5
Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses.
Environ Microbiol. 2008 Jan;10(1):200-7. doi: 10.1111/j.1462-2920.2007.01444.x. Epub 2007 Sep 24.
6
piRNAs--the ancient hunters of genome invaders.
Genes Dev. 2007 Jul 15;21(14):1707-13. doi: 10.1101/gad.1567007.
7
8
[Molecular mechanisms of RNA silencing by siRNA, miRNA and piRNA].
Tanpakushitsu Kakusan Koso. 2006 Dec;51(16 Suppl):2450-5.
9
piRNAs in the germ line.
Science. 2007 Apr 20;316(5823):397. doi: 10.1126/science.1137543.
10
CRISPR provides acquired resistance against viruses in prokaryotes.
Science. 2007 Mar 23;315(5819):1709-12. doi: 10.1126/science.1138140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验