Suppr超能文献

古生菌 Pyrococcus furiosus 的 RNA 和 DNA 靶向 CRISPR-Cas 免疫系统。

The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.

机构信息

*Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, U.S.A.

出版信息

Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056.

Abstract

Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5' tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA-Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR-Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR-Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR-Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR-Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.

摘要

我们利用嗜热古菌 Pyrococcus furiosus,阐明了 CRISPR(成簇规律间隔短回文重复)-Cas(CRISPR 相关)入侵防御途径中的几个关键步骤。P. furiosus 有七个转录活性的 CRISPR 基因座,总共编码 200 个 crRNA(CRISPR RNA)。该生物体中的 27 种 Cas 蛋白代表三种不同的途径,主要编码在两个大的基因簇中。Cas6 蛋白将 CRISPR 基因座转录本切割成单独的靶向入侵体的 crRNA。成熟的 crRNA 包含一个来自 CRISPR 基因座重复序列的特征序列元件(5'标签),这对于功能很重要。crRNA 被剪裁成不同的物种,并整合到三个不同的 crRNA-Cas 蛋白复合物中,这些复合物都是候选效应复合物。由 Cmr(Cas 模块 RAMP(重复相关神秘蛋白))(亚型 III-B)蛋白组成的复合物切割互补的靶 RNA,并可以通过类似于原核 RNAi 的方式编程切割新的靶 RNA。有证据表明,P. furiosus 中的另外两种 CRISPR-Cas 系统,Csa(Cas 亚型 Apern)(亚型 I-A)和 Cst(Cas 亚型 Tneap)(亚型 I-B),在 DNA 水平上靶向入侵体。对 P. furiosus 的 CRISPR-Cas 系统的研究为三种不同的 CRISPR-Cas 途径的 crRNA 生物发生和沉默机制提供了基础知识,并揭示了像 P. furiosus 这样的生物体拥有多种 RNA 指导的机制来抵抗不同的入侵体。我们对迷人的 CRISPR-Cas 途径的了解反过来又使我们能够利用这些系统进行令人兴奋的新的生物医学和生物技术应用。

相似文献

1
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056.
2
Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.
RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22.
3
DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.
Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30.
4
Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
Biochem Soc Trans. 2013 Dec;41(6):1422-6. doi: 10.1042/BST20130031.
5
Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs.
Mol Cell. 2012 Feb 10;45(3):292-302. doi: 10.1016/j.molcel.2011.10.023. Epub 2012 Jan 5.
6
Primed CRISPR DNA uptake in Pyrococcus furiosus.
Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135. doi: 10.1093/nar/gkaa381.
7
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.
Cell. 2009 Nov 25;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
8
Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
Genes Dev. 2014 Nov 1;28(21):2432-43. doi: 10.1101/gad.250712.114.
9
Structure of an RNA silencing complex of the CRISPR-Cas immune system.
Mol Cell. 2013 Oct 10;52(1):146-52. doi: 10.1016/j.molcel.2013.09.008.
10
Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
Extremophiles. 2017 Jan;21(1):95-107. doi: 10.1007/s00792-016-0871-5. Epub 2016 Aug 31.

引用本文的文献

1
Histones direct site-specific CRISPR spacer acquisition in model archaeon.
Nat Microbiol. 2023 Sep;8(9):1682-1694. doi: 10.1038/s41564-023-01446-3. Epub 2023 Aug 7.
2
Hyper-stimulation of Pyrococcus furiosus CRISPR DNA uptake by a self-transmissible plasmid.
Extremophiles. 2022 Nov 16;26(3):36. doi: 10.1007/s00792-022-01281-0.
4
Primed CRISPR DNA uptake in Pyrococcus furiosus.
Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135. doi: 10.1093/nar/gkaa381.
7
A journey down to hell: new thermostable protein-tags for biotechnology at high temperatures.
Extremophiles. 2020 Jan;24(1):81-91. doi: 10.1007/s00792-019-01134-3. Epub 2019 Sep 25.
8
CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes.
Extremophiles. 2019 Jan;23(1):19-33. doi: 10.1007/s00792-018-1057-0. Epub 2018 Oct 3.
9
Repeat modularity as a beneficial property of multiple CRISPR-Cas systems.
RNA Biol. 2019 Apr;16(4):585-587. doi: 10.1080/15476286.2018.1474073. Epub 2018 Aug 10.
10
Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.
Mol Cell. 2018 Jun 7;70(5):814-824.e6. doi: 10.1016/j.molcel.2018.05.002.

本文引用的文献

1
Crystal structure of the Cmr2-Cmr3 subcomplex in the CRISPR-Cas RNA silencing effector complex.
J Mol Biol. 2013 Oct 23;425(20):3811-23. doi: 10.1016/j.jmb.2013.03.042. Epub 2013 Apr 10.
2
Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.
RNA Biol. 2013 May;10(5):828-40. doi: 10.4161/rna.24084. Epub 2013 Mar 27.
3
CRISPR-mediated adaptive immune systems in bacteria and archaea.
Annu Rev Biochem. 2013;82:237-66. doi: 10.1146/annurev-biochem-072911-172315. Epub 2013 Mar 11.
4
Diversity of CRISPR systems in the euryarchaeal Pyrococcales.
RNA Biol. 2013 May;10(5):659-70. doi: 10.4161/rna.23927. Epub 2013 Feb 19.
5
Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex.
Structure. 2013 Mar 5;21(3):376-84. doi: 10.1016/j.str.2013.01.002. Epub 2013 Feb 7.
6
Crystal structure of Cmr5 from Pyrococcus furiosus and its functional implications.
FEBS Lett. 2013 Mar 18;587(6):562-8. doi: 10.1016/j.febslet.2013.01.029. Epub 2013 Jan 28.
7
The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity.
Annu Rev Genet. 2012;46:311-39. doi: 10.1146/annurev-genet-110711-155447.
8
Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants.
Appl Environ Microbiol. 2012 Jul;78(13):4669-76. doi: 10.1128/AEM.00936-12. Epub 2012 Apr 27.
9
Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems.
FEBS Lett. 2012 Mar 23;586(6):939-45. doi: 10.1016/j.febslet.2012.02.036. Epub 2012 Feb 28.
10
Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex.
Structure. 2012 Mar 7;20(3):545-53. doi: 10.1016/j.str.2012.01.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验