Rühle V, Ziebert F, Peter R, Zimmermann W
Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth, Germany.
Eur Phys J E Soft Matter. 2008 Nov;27(3):243-51. doi: 10.1140/epje/i2007-10377-x. Epub 2008 Oct 29.
The dynamical interaction between filaments and motor proteins is known for their propensity to self-organize into spatio-temporal patterns. Since the filaments are polar in the sense that motors define a direction of motion on them, the system can display a spatially homogeneous polar-filament orientation. We show that the latter anisotropic state itself may become unstable with respect to inhomogeneous fluctuations. This scenario shares similarities with instabilities in planarly aligned nematic liquid crystals: in both cases the wave vector of the instability may be oriented either parallel or oblique to the polarity axis. However, the encountered instabilities here are long-wave instead of short-wave and the destabilizing modes are drifting ones due to the polar symmetry. Additionally a nonpropagating transverse instability is possible. The stability diagrams related to the various wave vector orientations relative to the polarity axis are determined and discussed for a specific model of motor-filament interactions.
细丝与运动蛋白之间的动力学相互作用因其倾向于自组织成时空模式而为人所知。由于细丝具有极性,即运动蛋白在其上定义了一个运动方向,该系统可以呈现出空间均匀的极性细丝取向。我们表明,后一种各向异性状态本身可能会因不均匀涨落而变得不稳定。这种情况与平面排列的向列型液晶中的不稳定性有相似之处:在这两种情况下,不稳定性的波矢可能与极性轴平行或倾斜。然而,这里遇到的不稳定性是长波而非短波,并且由于极性对称性,失稳模式是漂移模式。此外,还可能存在非传播性的横向不稳定性。针对运动蛋白 - 细丝相互作用的特定模型,确定并讨论了与相对于极性轴的各种波矢取向相关的稳定性图。