Ahmadi Aphrodite, Marchetti M C, Liverpool T B
Physics Department, Syracuse University, Syracuse, New York 13244, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061913. doi: 10.1103/PhysRevE.74.061913. Epub 2006 Dec 29.
We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.
我们描述了极性生物丝以及固定和移动交联剂溶液的大规模集体行为。移动和固定交联剂都会诱导丝排列,促进极性或向列相序。此外,移动交联剂,如运动蛋白簇,会在丝之间交换力和扭矩,并通过丝束集使均匀状态不稳定。我们从溶液中刚性丝的斯莫卢霍夫斯基方程出发,其中丝之间由成对交联介导的相互作用产生平移和旋转电流。通过对斯莫卢霍夫斯基方程进行粗粒化,用丝和马达密度、极化以及排列张量的连续方程来描述系统的大规模性质。系统可能的均匀和非均匀状态作为动力学方程的稳定解得到,并根据实验可获取的参数进行表征。我们与其他作者的工作建立联系,并表明我们的模型能够根据交联剂的物理性质对流体动力学方程中的各种参数进行估计。