Case G D, Ohnishi T, Leigh J S
Biochem J. 1976 Dec 15;160(3):785-95. doi: 10.1042/bj1600785.
E.p.r. (electron-paramagnetic-resonance) spectra of ubisemiquinone (QH) organic radicals and all of the known iron-sulphur centres were studied in normal and 'nickle-plated' pigeon heart mitochondria, submitochondrial particles and submitochondrial particles from which succinate dehydrogenase had been removed. Incubation of pigeon heart mitochondria, submitochondrial particles or succinate dehydrogenase-depleted submitochondrial particles with substrate in the presence of pure O2 results in the accumulation of Q-H. In mitochondria, the e.p.r. spectrum of Q-H is characterized by in-homogeneous line broadening. A heterogeneous population of semiquinones appears to be partly responsible for these effects in mitochondria. Additon of Ni(II) to mitochondria renders saturation of the Q-H resonance more difficult. On the other hand, the resonance in either submitochondrial particles or succinate dehydrogenase-depleted particles is narrower than the same spectrum in mitochondria, and saturates like a homogeneous line. The presence of Ni(II) in either of these preparations, further, has no effect on either the A-H spectrum or the saturation curve. Therefore QH appears to be situated on the exterior surface of the mitochondrion. Likewise, the e.p.r. spectra and saturation curves of iron-sulphur centre N-2 exhibit characteristics of inhomogeneous line broadening, not only in intact mitochondria but also in both submitochondrial particles and succinate dehydrogenase-depleted particles. Because of the small pool size of centre N-2, this effect is likely to arise from a spin interaction with some other component in the membrane. Ni(II) has no effect on the saturation in centre N-2 in mitochondria or submitochondrial particles, and only a marginal effect in the succinate dehydrogenase-depleted preparation. These results are indeterminate with respect to the position of centre N-2 in the membrane; but suggest that its distance from the succinate dehydrogenase binding site is on the order of 1 nm. All of the other ferredoxin-type iron-sulphur centres in both preparations were not affected by paramagnetic ions. Homogeneous e.p.r. spectra and saturation curves are observed for both of the HiPIP-type (high-potential iron-sulphur protein-type) iron-sulphur centres in mitochondrial centres S-3 and bc-3. Addition of No(II) to intact mitochondria results in a dipolar interaction with centre bc-3. No effect was observed on centre S-3 in either preparation. A comprehensive model is presented for the structure of the respiratory electron-transport system in mitochondria, based on e.p.r. relaxation studies in the present and the preceding paper. There is no direct evidence for transmembrane electron flow through any of the known energy-coupling sites in mitochondria, so that direct hydrogen atom transfer across the membrane (as a combination of H+ translocation coupled to electron flow) does not occur...
在正常的和“镀镍”的鸽心线粒体、亚线粒体颗粒以及去除了琥珀酸脱氢酶的亚线粒体颗粒中,研究了泛半醌(QH)有机自由基和所有已知铁硫中心的电子顺磁共振(E.p.r.)光谱。在纯氧存在下,将鸽心线粒体、亚线粒体颗粒或去除了琥珀酸脱氢酶的亚线粒体颗粒与底物一起温育,会导致Q-H的积累。在线粒体中,Q-H的E.p.r.光谱的特征是不均匀线宽展宽。半醌的异质群体似乎部分导致了线粒体中的这些效应。向线粒体中添加Ni(II)会使Q-H共振的饱和更难。另一方面,亚线粒体颗粒或去除了琥珀酸脱氢酶的颗粒中的共振比线粒体中相同的光谱更窄,并且像均匀线一样饱和。在这些制剂中的任何一种中存在Ni(II),进一步对A-H光谱或饱和曲线都没有影响。因此,QH似乎位于线粒体外表面。同样,铁硫中心N-2的E.p.r.光谱和饱和曲线不仅在完整的线粒体中,而且在亚线粒体颗粒和去除了琥珀酸脱氢酶的颗粒中都表现出不均匀线宽展宽的特征。由于中心N-2的池大小较小,这种效应可能是由与膜中某些其他成分的自旋相互作用引起的。Ni(II)对线粒体或亚线粒体颗粒中中心N-2的饱和没有影响,而在去除了琥珀酸脱氢酶的制剂中只有轻微影响。这些结果对于中心N-2在膜中的位置是不确定的;但表明它与琥珀酸脱氢酶结合位点的距离约为1纳米。两种制剂中的所有其他铁氧还蛋白型铁硫中心都不受顺磁性离子的影响。在线粒体中心S-3和bc-3中的两种HiPIP型(高电位铁硫蛋白型)铁硫中心都观察到了均匀的E.p.r.光谱和饱和曲线。向完整的线粒体中添加No(II)会导致与中心bc-3的偶极相互作用。在两种制剂中对中心S-3都没有观察到影响。基于本文和前一篇论文中的E.p.r.弛豫研究,提出了线粒体中呼吸电子传递系统结构的综合模型。没有直接证据表明跨膜电子流过线粒体中任何已知的能量偶联位点,因此不会发生跨膜直接氢原子转移(作为与电子流耦合的H+转运的组合)……