Suppr超能文献

通过比较亲缘关系密切的细菌和古菌基因组揭示的原核生物进化趋势。

Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes.

作者信息

Novichkov Pavel S, Wolf Yuri I, Dubchak Inna, Koonin Eugene V

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

J Bacteriol. 2009 Jan;191(1):65-73. doi: 10.1128/JB.01237-08. Epub 2008 Oct 31.

Abstract

In order to explore microevolutionary trends in bacteria and archaea, we constructed a data set of 41 alignable tight genome clusters (ATGCs). We show that the ratio of the medians of nonsynonymous to synonymous substitution rates (dN/dS) that is used as a measure of the purifying selection pressure on protein sequences is a stable characteristic of the ATGCs. In agreement with previous findings, parasitic bacteria, notwithstanding the sometimes dramatic genome shrinkage caused by gene loss, are typically subjected to relatively weak purifying selection, presumably owing to relatively small effective population sizes and frequent bottlenecks. However, no evidence of genome streamlining caused by strong selective pressure was found in any of the ATGCs. On the contrary, a significant positive correlation between the genome size, as well as gene size, and selective pressure was observed, although a variety of free-living prokaryotes with very close selective pressures span nearly the entire range of genome sizes. In addition, we examined the connections between the sequence evolution rate and other genomic features. Although gene order changes much faster than protein sequences during the evolution of prokaryotes, a strong positive correlation was observed between the "rearrangement distance" and the amino acid distance, suggesting that at least some of the events leading to genome rearrangement are subjected to the same type of selective constraints as the evolution of amino acid sequences.

摘要

为了探究细菌和古菌的微观进化趋势,我们构建了一个包含41个可比对紧密基因组簇(ATGCs)的数据集。我们发现,用作衡量蛋白质序列纯化选择压力的非同义替换率与同义替换率的中位数之比(dN/dS)是ATGCs的一个稳定特征。与先前的研究结果一致,寄生细菌尽管有时会因基因丢失导致显著的基因组收缩,但通常受到相对较弱的纯化选择,这可能是由于有效种群规模相对较小且频繁出现瓶颈效应。然而,在任何一个ATGCs中都未发现由强选择压力导致的基因组精简的证据。相反,尽管各种具有非常接近选择压力的自由生活原核生物的基因组大小几乎涵盖了整个范围,但观察到基因组大小以及基因大小与选择压力之间存在显著的正相关。此外,我们研究了序列进化速率与其他基因组特征之间的联系。尽管在原核生物进化过程中基因顺序的变化比蛋白质序列快得多,但观察到“重排距离”与氨基酸距离之间存在很强的正相关,这表明至少一些导致基因组重排的事件与氨基酸序列的进化受到相同类型的选择约束。

相似文献

1
Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes.
J Bacteriol. 2009 Jan;191(1):65-73. doi: 10.1128/JB.01237-08. Epub 2008 Oct 31.
2
Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes.
Curr Biol. 2020 Oct 5;30(19):3848-3855.e4. doi: 10.1016/j.cub.2020.07.034. Epub 2020 Aug 6.
3
Theory of prokaryotic genome evolution.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11399-11407. doi: 10.1073/pnas.1614083113. Epub 2016 Oct 4.
6
ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54. doi: 10.1093/nar/gkn684. Epub 2008 Oct 9.
9
Strong Purifying Selection Is Associated with Genome Streamlining in Epipelagic Marinimicrobia.
Genome Biol Evol. 2019 Oct 1;11(10):2887-2894. doi: 10.1093/gbe/evz201.

引用本文的文献

1
Evolution of gene order in prokaryotes is driven primarily by gene gain and loss.
bioRxiv. 2025 Apr 8:2025.04.03.647019. doi: 10.1101/2025.04.03.647019.
2
Evolution of gene order in prokaryotes is driven primarily by gene gain and loss.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2502752122. doi: 10.1073/pnas.2502752122. Epub 2025 Jun 11.
3
Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning.
J Mol Evol. 2024 Dec;92(6):703-719. doi: 10.1007/s00239-024-10195-8. Epub 2024 Aug 29.
4
Long range segmentation of prokaryotic genomes by gene age and functionality.
Nucleic Acids Res. 2024 Oct 14;52(18):11045-11059. doi: 10.1093/nar/gkae745.
5
Evaluating the Safety of GW-01 Obtained from Sheep Rumen Chyme.
Microorganisms. 2024 Jul 18;12(7):1457. doi: 10.3390/microorganisms12071457.
6
Long range segmentation of prokaryotic genomes by gene age and functionality.
bioRxiv. 2024 Apr 26:2024.04.26.591304. doi: 10.1101/2024.04.26.591304.
7
Functional and evolutionary significance of unknown genes from uncultivated taxa.
Nature. 2024 Feb;626(7998):377-384. doi: 10.1038/s41586-023-06955-z. Epub 2023 Dec 18.
8
Genomic Diversity and Chromosomal Rearrangements in and .
Int J Mol Sci. 2022 Dec 9;23(24):15644. doi: 10.3390/ijms232415644.
9
Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans.
Microbiome. 2022 Apr 28;10(1):67. doi: 10.1186/s40168-022-01254-7.
10

本文引用的文献

1
Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world.
Nucleic Acids Res. 2008 Dec;36(21):6688-719. doi: 10.1093/nar/gkn668. Epub 2008 Oct 23.
2
ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D448-54. doi: 10.1093/nar/gkn684. Epub 2008 Oct 9.
3
Flavin-dependent thymidylate synthase X limits chromosomal DNA replication.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9948-52. doi: 10.1073/pnas.0801356105. Epub 2008 Jul 11.
4
The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata.
Nucleic Acids Res. 2008 Jan;36(Database issue):D475-9. doi: 10.1093/nar/gkm884. Epub 2007 Nov 2.
5
PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 2007 Aug;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub 2007 May 4.
6
Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria.
BMC Evol Biol. 2007 Feb 12;7:17. doi: 10.1186/1471-2148-7-17.
7
Quantification of insect genome divergence.
Trends Genet. 2007 Jan;23(1):16-20. doi: 10.1016/j.tig.2006.10.004. Epub 2006 Nov 9.
8
The 160-kilobase genome of the bacterial endosymbiont Carsonella.
Science. 2006 Oct 13;314(5797):267. doi: 10.1126/science.1134196.
9
Streamlining and simplification of microbial genome architecture.
Annu Rev Microbiol. 2006;60:327-49. doi: 10.1146/annurev.micro.60.080805.142300.
10
Orthologs, paralogs, and evolutionary genomics.
Annu Rev Genet. 2005;39:309-38. doi: 10.1146/annurev.genet.39.073003.114725.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验