Suppr超能文献

通过对高丝氨酸O-琥珀酰基转移酶进行定向进化提高大肠杆菌的热稳定性和耐乙酸能力。

Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase.

作者信息

Mordukhova Elena A, Lee Hee-Soon, Pan Jae-Gu

机构信息

Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoun-dong, Yuseong-gu, Daejeon 305-340, Korea.

出版信息

Appl Environ Microbiol. 2008 Dec;74(24):7660-8. doi: 10.1128/AEM.00654-08. Epub 2008 Oct 31.

Abstract

In Escherichia coli, growth is limited at elevated temperatures mainly because of the instability of a single enzyme, homoserine o-succinyltransferase (MetA), the first enzyme in the methionine biosynthesis pathway. The metA gene from the thermophile Geobacillus kaustophilus cloned into the E. coli chromosome was found to enhance the growth of the host strain at elevated temperature (44 degrees C), thus confirming the limited growth of E. coli due to MetA instability. In order to improve E. coli growth at higher temperatures, we used random mutagenesis to obtain a thermostable MetA(E. coli) protein. Sequencing of the thermotolerant mutant showed five amino acid substitutions: S61T, E213V, I229T, N267D, and N271K. An E. coli strain with the mutated metA gene chromosomally inserted showed accelerated growth over a temperature range of 34 to 44 degrees C. We used the site-directed metA mutants to identify two amino acid residues responsible for the sensitivity of MetA(E. coli) to both heat and acids. Replacement of isoleucine 229 with threonine and asparagine 267 with aspartic acid stabilized the protein. The thermostable MetA(E. coli) enzymes showed less aggregation in vivo at higher temperature, as well as upon acetic acid treatment. The data presented here are the first to show improved E. coli growth at higher temperatures solely due to MetA stabilization and provide new knowledge for designing E. coli strains that grow at higher temperatures, thus reducing the cooling cost of bioprocesses.

摘要

在大肠杆菌中,高温下生长受限主要是因为单一酶——高丝氨酸O - 琥珀酰转移酶(MetA)不稳定,它是甲硫氨酸生物合成途径中的首个酶。将嗜热栖热放线菌的metA基因克隆到大肠杆菌染色体中,发现可增强宿主菌株在高温(44摄氏度)下的生长,从而证实了由于MetA不稳定导致大肠杆菌生长受限。为了提高大肠杆菌在更高温度下的生长,我们采用随机诱变获得了一种耐热的MetA(大肠杆菌)蛋白。耐热突变体的测序显示有五个氨基酸取代:S61T、E213V、I229T、N267D和N271K。染色体插入突变metA基因的大肠杆菌菌株在34至44摄氏度的温度范围内生长加速。我们使用定点突变的metA来确定导致MetA(大肠杆菌)对热和酸敏感的两个氨基酸残基。用苏氨酸取代异亮氨酸229以及用天冬氨酸取代天冬酰胺267可使该蛋白稳定。耐热的MetA(大肠杆菌)酶在体内高温时以及经乙酸处理后聚集较少。此处呈现的数据首次表明仅因MetA稳定就能提高大肠杆菌在更高温度下的生长,并为设计能在更高温度下生长的大肠杆菌菌株提供了新知识,从而降低生物过程的冷却成本。

相似文献

引用本文的文献

2
Regulation of sulfur starvation-induced proteins.硫饥饿诱导蛋白的调控
3 Biotech. 2025 May;15(5):130. doi: 10.1007/s13205-025-04303-8. Epub 2025 Apr 16.

本文引用的文献

10
Protein stability in extremophilic archaea.嗜极古菌中的蛋白质稳定性
Front Biosci. 2000 Sep 1;5:D787-95. doi: 10.2741/A551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验