Suppr超能文献

超越赫兹区域的软物质球形压痕:超弹性模型的数值与实验验证

Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models.

作者信息

Lin David C, Shreiber David I, Dimitriadis Emilios K, Horkay Ferenc

机构信息

Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Biomech Model Mechanobiol. 2009 Oct;8(5):345-58. doi: 10.1007/s10237-008-0139-9. Epub 2008 Nov 2.

Abstract

The lack of practicable nonlinear elastic contact models frequently compels the inappropriate use of Hertzian models in analyzing indentation data and likely contributes to inconsistencies associated with the results of biological atomic force microscopy measurements. We derived and validated with the aid of the finite element method force-indentation relations based on a number of hyperelastic strain energy functions. The models were applied to existing data from indentation, using microspheres as indenters, of synthetic rubber-like gels, native mouse cartilage tissue, and engineered cartilage. For the biological tissues, the Fung and single-term Ogden models achieved the best fits of the data while all tested hyperelastic models produced good fits for the synthetic gels. The Hertz model proved to be acceptable for the synthetic gels at small deformations (strain < 0.05 for the samples tested), but not for the biological tissues. Although this finding supports the generally accepted view that many soft materials can be assumed to be linear elastic at small deformations, the nonlinear models facilitate analysis of intrinsically nonlinear tissues and large-strain indentation behavior.

摘要

缺乏实用的非线性弹性接触模型常常迫使人们在分析压痕数据时不适当地使用赫兹模型,这可能导致与生物原子力显微镜测量结果相关的不一致性。我们借助有限元方法,基于多种超弹性应变能函数推导并验证了力-压痕关系。这些模型被应用于现有的压痕数据,这些数据是使用微球作为压头对合成橡胶状凝胶、天然小鼠软骨组织和工程软骨进行压痕实验得到的。对于生物组织,冯氏模型和单参数奥格登模型对数据的拟合效果最佳,而所有测试的超弹性模型对合成凝胶都有很好的拟合效果。赫兹模型在小变形情况下(对于测试的样品,应变<0.05)对合成凝胶是可以接受的,但对生物组织则不然。尽管这一发现支持了普遍接受的观点,即许多软材料在小变形时可被假定为线弹性,但非线性模型有助于分析本质上非线性的组织和大应变压痕行为。

相似文献

1
Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models.
Biomech Model Mechanobiol. 2009 Oct;8(5):345-58. doi: 10.1007/s10237-008-0139-9. Epub 2008 Nov 2.
4
On the determination of elastic moduli of cells by AFM based indentation.
Sci Rep. 2017 Apr 3;7:45575. doi: 10.1038/srep45575.
5
Macro-indentation testing of soft biological materials and assessment of hyper-elastic material models from inverse finite element analysis.
J Mech Behav Biomed Mater. 2024 Mar;151:106389. doi: 10.1016/j.jmbbm.2024.106389. Epub 2024 Jan 10.
6
Nonlinear compliance of elastic layers to indentation.
Biomech Model Mechanobiol. 2018 Apr;17(2):419-438. doi: 10.1007/s10237-017-0969-4. Epub 2017 Nov 1.
7
Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials.
Biomech Model Mechanobiol. 2014 Jan;13(1):1-11. doi: 10.1007/s10237-013-0481-4. Epub 2013 Mar 13.
8
A new method for determining the ogden parameters of soft materials using indentation experiments.
J Mech Behav Biomed Mater. 2024 Jul;155:106574. doi: 10.1016/j.jmbbm.2024.106574. Epub 2024 May 14.
9
Hyperelastic characterization reveals proteoglycans drive the nanoscale strain-stiffening response in hyaline cartilage.
J Biomech. 2023 Jan;146:111397. doi: 10.1016/j.jbiomech.2022.111397. Epub 2022 Nov 25.
10
Investigation of micromechanical properties of hard sphere filled composite hydrogels by atomic force microscopy and finite element simulations.
J Mech Behav Biomed Mater. 2018 Feb;78:496-504. doi: 10.1016/j.jmbbm.2017.10.035. Epub 2017 Oct 31.

引用本文的文献

1
A Comprehensive Mechanical Testing of Polyacrylamide Hydrogels: The Impact of Crosslink Density.
Polymers (Basel). 2025 Mar 11;17(6):737. doi: 10.3390/polym17060737.
2
The Histological and Mechanical Behavior of Skin During Puncture for Different Impactor Sizes and Loading Rates.
Ann Biomed Eng. 2025 May;53(5):1209-1225. doi: 10.1007/s10439-025-03699-x. Epub 2025 Mar 7.
3
Indenting at the Microscale: Guidelines for Robust Mechanical Characterization of Alginate Microgels.
ACS Appl Mater Interfaces. 2025 Mar 5;17(9):13513-13526. doi: 10.1021/acsami.4c20952. Epub 2025 Feb 24.
4
Optical tweezers in biomedical research - progress and techniques.
J Med Life. 2024 Nov;17(11):978-993. doi: 10.25122/jml-2024-0316.
5
Mechanical confinement prevents ectopic platelet release.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407829121. doi: 10.1073/pnas.2407829121. Epub 2024 Sep 5.
7
Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord.
J Neuroinflammation. 2024 Apr 10;21(1):88. doi: 10.1186/s12974-024-03089-5.
8
Assessment of the nano-mechanical properties of healthy and atherosclerotic coronary arteries by atomic force microscopy.
J R Soc Interface. 2024 Feb;21(211):20230674. doi: 10.1098/rsif.2023.0674. Epub 2024 Feb 7.
9
Rapid innervation and physiological epidermal regeneration by bioengineered dermis implanted in mouse.
Mater Today Bio. 2024 Jan 10;25:100949. doi: 10.1016/j.mtbio.2024.100949. eCollection 2024 Apr.
10
Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis.
Sci Rep. 2023 Nov 7;13(1):19285. doi: 10.1038/s41598-023-45842-5.

本文引用的文献

1
Mechanical properties of dura mater from the rat brain and spinal cord.
J Neurotrauma. 2008 Jan;25(1):38-51. doi: 10.1089/neu.2007.0348.
2
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
3
Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor.
J Surg Res. 2008 Sep;149(1):47-56. doi: 10.1016/j.jss.2007.12.788. Epub 2008 Jan 28.
4
Articular cartilage mechanical and biochemical property relations before and after in vitro growth.
J Biomech. 2007;40(16):3607-14. doi: 10.1016/j.jbiomech.2007.06.005. Epub 2007 Jul 12.
5
Mechanical properties of hyaline and repair cartilage studied by nanoindentation.
Acta Biomater. 2007 Nov;3(6):873-81. doi: 10.1016/j.actbio.2007.04.005. Epub 2007 Jun 22.
7
Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix.
J Biomech. 2007;40(5):1011-23. doi: 10.1016/j.jbiomech.2006.04.004. Epub 2006 Jun 21.
8
A constitutive model of the human vocal fold cover for fundamental frequency regulation.
J Acoust Soc Am. 2006 Feb;119(2):1050-62. doi: 10.1121/1.2159433.
9
Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy.
Osteoarthritis Cartilage. 2006 Jun;14(6):571-9. doi: 10.1016/j.joca.2005.12.003. Epub 2006 Feb 14.
10
Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.
J Biomech. 2007;40(1):182-90. doi: 10.1016/j.jbiomech.2005.11.002. Epub 2006 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验