Babalola K O, Cootes T F, Twining C J, Petrovic V, Taylor C J
Division of Imaging Science and Biomedical Engineering, The University of Manchester, Manchester, UK.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):401-8. doi: 10.1007/978-3-540-85988-8_48.
We describe an efficient and accurate method for segmenting sets of subcortical structures in 3D MR images of the brain. We first find the approximate position of all the structures using a global Active Appearance Model (AAM). We then refine the shape and position of each structure using a set of individual AAMs trained for each. Finally we produce a detailed segmentation by computing the probability that each voxel belongs to the structure, using regression functions trained for each individual voxel. The models are trained using a large set of labelled images, using a novel variant of 'groupwise' registration to obtain the necessary image correspondences. We evaluate the method on a large dataset, and demonstrate that it achieves results comparable with some of the best published.
我们描述了一种在大脑三维磁共振图像中分割皮质下结构集的高效且准确的方法。我们首先使用全局主动外观模型(AAM)找到所有结构的大致位置。然后,我们使用为每个结构训练的一组单独的AAM来细化每个结构的形状和位置。最后,我们通过计算每个体素属于该结构的概率来生成详细的分割结果,使用为每个单独体素训练的回归函数。这些模型使用大量带标签的图像进行训练,使用一种新颖的“分组”配准变体来获得必要的图像对应关系。我们在一个大型数据集上评估了该方法,并证明它取得了与一些已发表的最佳结果相当的成果。