Suppr超能文献

对四种自动分割大脑皮层下结构方法的评估。

An evaluation of four automatic methods of segmenting the subcortical structures in the brain.

作者信息

Babalola Kolawole Oluwole, Patenaude Brian, Aljabar Paul, Schnabel Julia, Kennedy David, Crum William, Smith Stephen, Cootes Tim, Jenkinson Mark, Rueckert Daniel

机构信息

University of Manchester, Imaging Science and Biomedical Engineering, Stopford Building, Oxford Road, Manchester M13 9PT, UK.

出版信息

Neuroimage. 2009 Oct 1;47(4):1435-47. doi: 10.1016/j.neuroimage.2009.05.029. Epub 2009 May 20.

Abstract

The automation of segmentation of subcortical structures in the brain is an active research area. We have comprehensively evaluated four novel methods of fully automated segmentation of subcortical structures using volumetric, spatial overlap and distance-based measures. Two methods are atlas-based - classifier fusion and labelling (CFL) and expectation-maximisation segmentation using a brain atlas (EMS), and two incorporate statistical models of shape and appearance - profile active appearance models (PAM) and Bayesian appearance models (BAM). Each method was applied to the segmentation of 18 subcortical structures in 270 subjects from a diverse pool varying in age, disease, sex and image acquisition parameters. Our results showed that all four methods perform on par with recently published methods. CFL performed better than the others according to all three classes of metrics. In summary over all structures, the ranking by the Dice coefficient was CFL, BAM, joint EMS and PAM. The Hausdorff distance ranked the methods as CFL, joint PAM and BAM, EMS, whilst percentage absolute volumetric difference ranked them as joint CFL and PAM, joint BAM and EMS. Furthermore, as we had four methods of performing segmentation, we investigated whether the results obtained by each method were more similar to each other than to the manual segmentations using Williams' Index. Reassuringly, the Williams' Index was close to 1 for most subjects (mean=1.02, sd=0.05), indicating better agreement of each method with the gold standard than with the other methods. However, 2% of cases (mainly amygdala and nucleus accumbens) had values outside 3 standard deviations of the mean.

摘要

大脑皮层下结构分割的自动化是一个活跃的研究领域。我们使用体积、空间重叠和基于距离的度量方法,全面评估了四种全新的皮层下结构全自动分割方法。两种方法基于图谱——分类器融合与标记(CFL)以及使用脑图谱的期望最大化分割(EMS),另外两种方法纳入了形状和外观的统计模型——轮廓主动外观模型(PAM)和贝叶斯外观模型(BAM)。每种方法都应用于来自不同群体的270名受试者的18个皮层下结构的分割,这些受试者在年龄、疾病、性别和图像采集参数方面存在差异。我们的结果表明,所有四种方法的表现与最近发表的方法相当。根据所有三类度量标准,CFL的表现优于其他方法。总体而言,所有结构按Dice系数的排名为CFL、BAM、联合EMS和PAM。豪斯多夫距离对方法的排名为CFL、联合PAM和BAM、EMS,而绝对体积差异百分比的排名为联合CFL和PAM、联合BAM和EMS。此外,由于我们有四种进行分割的方法,我们使用威廉姆斯指数研究了每种方法获得的结果是否彼此之间比与手动分割结果更相似。令人放心的是,大多数受试者的威廉姆斯指数接近1(平均值 = 1.02,标准差 = 0.05),这表明每种方法与金标准的一致性优于与其他方法的一致性。然而,2%的病例(主要是杏仁核和伏隔核)的值超出了平均值的3个标准差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验