Suppr超能文献

主动形状模型搜索中的最优特征点选择与自动初始化

Optimal feature point selection and automatic initialization in active shape model search.

作者信息

Lekadir Karim, Yang Guang-Zhong

机构信息

Visual Information Processing, Department of Computing Imperial College London, United Kingdom.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):434-41. doi: 10.1007/978-3-540-85988-8_52.

Abstract

This paper presents a novel approach for robust and fully automatic segmentation with active shape model search. The proposed method incorporates global geometric constraints during feature point search by using interlandmark conditional probabilities. The A* graph search algorithm is adapted to identify in the image the optimal set of valid feature points. The technique is extended to enable reliable and fast automatic initialization of the ASM search. Validation with 2-D and 3-D MR segmentation of the left ventricular epicardial border demonstrates significant improvement in robustness and overall accuracy, while eliminating the need for manual initialization.

摘要

本文提出了一种通过主动形状模型搜索进行鲁棒且全自动分割的新方法。所提出的方法在特征点搜索过程中通过使用地标间条件概率纳入全局几何约束。采用A*图搜索算法在图像中识别有效特征点的最优集。该技术得到扩展,以实现主动形状模型搜索的可靠且快速自动初始化。对左心室心外膜边界的二维和三维磁共振分割进行验证表明,在鲁棒性和整体准确性方面有显著提高,同时无需手动初始化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验