Brooks S P, Storey K B
Department of Biology, Carleton University, Ottawa, Ontario, Canada.
Biochem J. 1991 Sep 15;278 ( Pt 3)(Pt 3):875-81. doi: 10.1042/bj2780875.
An investigation of the direct transfer of metabolites from rabbit muscle L-lactate dehydrogenase (LDH, EC 1.1.1.27) to glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) revealed discrepancies between theoretical predictions and experimental results. Measurements of the GPDH reaction rate at a fixed NADH concentration and in the presence of increasing LDH concentrations gave experimental results similar to those previously obtained by Srivastava, Smolen, Betts, Fukushima, Spivey & Bernhard [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6464-6468]. However, a mathematical solution of the direct-transfer-mechanism equations as described by Srivastava et al. (1989) showed that the direct-transfer model did not adequately describe the experimental behaviour of the reaction rate at increasing LDH concentrations. In addition, experiments designed to measure the formation of an LDH4.NADH.GPDH2 complex, predicted by the direct-transfer model, indicated that no significant formation of tertiary complex occurred. An examination of other kinetic models, developed to describe the LDH/GPDH/NADH system better, revealed that the experimental results may be best explained by assuming that free NADH, and not E1.NADH, is the sole substrate for GPDH. These results suggest that direct transfer of NADH between rabbit muscle LDH and GPDH does not occur in vitro.
一项关于兔肌肉L-乳酸脱氢酶(LDH,EC 1.1.1.27)向甘油-3-磷酸脱氢酶(GPDH,EC 1.1.1.8)直接转移代谢物的研究揭示了理论预测与实验结果之间的差异。在固定的NADH浓度下且LDH浓度不断增加的情况下测量GPDH反应速率,得到的实验结果与Srivastava、Smolen、Betts、Fukushima、Spivey和Bernhard之前获得的结果相似[(1989年)《美国国家科学院院刊》86,6464 - 6468]。然而,Srivastava等人(1989年)所描述的直接转移机制方程的数学解表明,直接转移模型不能充分描述在LDH浓度增加时反应速率的实验行为。此外,旨在测量直接转移模型所预测的LDH4.NADH.GPDH2复合物形成的实验表明,没有显著形成三级复合物。对为更好地描述LDH/GPDH/NADH系统而开发的其他动力学模型的研究表明,通过假设游离NADH而非E1.NADH是GPDH的唯一底物,可能最好地解释实验结果。这些结果表明,兔肌肉LDH和GPDH之间在体外不会发生NADH的直接转移。