Suppr超能文献

一种宽带全光超声换能器的特性研究——从光学和声学特性到成像

Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging.

作者信息

Hou Yang, Kim Jin-Sung, Huang Sheng-Wen, Ashkenazi S, Guo L J, O'Donnell M

机构信息

Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Aug;55(8):1867-77. doi: 10.1109/TUFFC.2008.870.

Abstract

A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high- frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 microm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 microm diameter transmit element combined with a 20 microm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device's optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging.

摘要

一种用于高频超声成像的宽带全光超声换能器已被设计、制造并进行了评估。该器件由印刻在玻璃基板顶部的二维金纳米结构组成,其后是一个3微米厚的聚二甲基硅氧烷(PDMS)层和一个30纳米厚的金层。在金纳米结构的共振波长处的激光脉冲聚焦到表面以产生超声波,而金纳米结构与30纳米厚的金层以及其间的PDMS层一起形成一个用于超声检测的标准具,该标准具使用远离共振波长的连续波激光作为探测光束。在换能器远场记录的脉冲回波信号的中心频率为40兆赫兹,-6分贝带宽为57兆赫兹。来自一个直径70微米的发射元件与一个直径20微米的接收元件组合,探测位于距换能器表面1.5毫米处的近乎完美反射体时的信噪比(SNR)大于10分贝,并且有潜力至少再提高40分贝。在对成像目标进行机械扫描时,利用来自该换能器的多次测量模拟了一个高频超声阵列。对该器件光学和声学特性的表征以及初步成像结果有力地表明,全光超声换能器可用于构建用于实时高分辨率超声成像的高频阵列。

相似文献

1
Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Aug;55(8):1867-77. doi: 10.1109/TUFFC.2008.870.
3
Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):327-42. doi: 10.1109/TUFFC.2008.652.
4
Thin polymer etalon arrays for high-resolution photoacoustic imaging.
J Biomed Opt. 2008 Nov-Dec;13(6):064033. doi: 10.1117/1.3042260.
5
Volumetric ultrasound imaging using 2-D CMUT arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1581-94. doi: 10.1109/tuffc.2003.1251142.
7
Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Aug;55(8):1705-18. doi: 10.1109/TUFFC.2008.856.
8
Coded excitation and annular arrays for high-frequency ultrasound imaging.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2408-11. doi: 10.1109/IEMBS.2006.259500.
9
Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):474-82. doi: 10.1109/tuffc.2006.1593387.
10
Fabrication and evaluation of fully-sampled, two-dimensional transducer array for "Sonic Window" imaging system.
Ultrasonics. 2008 Sep;48(5):376-83. doi: 10.1016/j.ultras.2008.01.011. Epub 2008 Mar 5.

引用本文的文献

1
Tailored photoacoustic apertures with superimposed optical holograms.
Biomed Opt Express. 2023 Nov 20;14(12):6361-6380. doi: 10.1364/BOE.507453. eCollection 2023 Dec 1.
2
Flexible Ultrasonic Transducers for Wearable Biomedical Applications: A Review on Advanced Materials, Structural Designs, and Future Prospects.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jul;71(7):786-810. doi: 10.1109/TUFFC.2023.3333318. Epub 2024 Jul 9.
4
Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke.
Front Neurosci. 2022 Dec 1;16:1055552. doi: 10.3389/fnins.2022.1055552. eCollection 2022.
5
Laser-generated focused ultrasound transducer using a perforated photoacoustic lens for tissue characterization.
Biomed Opt Express. 2021 Feb 9;12(3):1375-1390. doi: 10.1364/BOE.416884. eCollection 2021 Mar 1.
7
Dual-Polarized Fiber Laser Sensor for Photoacoustic Microscopy.
Sensors (Basel). 2019 Oct 24;19(21):4632. doi: 10.3390/s19214632.
8
Source Density Apodization: Image Artifact Suppression Through Source Pitch Nonuniformity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):497-504. doi: 10.1109/TUFFC.2019.2945636. Epub 2019 Oct 4.
9
Video-rate all-optical ultrasound imaging.
Biomed Opt Express. 2018 Jul 2;9(8):3481-3494. doi: 10.1364/BOE.9.003481. eCollection 2018 Aug 1.
10
Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review.
J Healthc Eng. 2018 Apr 30;2018:3182483. doi: 10.1155/2018/3182483. eCollection 2018.

本文引用的文献

2
Optical dichroism of lithographically designed silver nanoparticle films.
Opt Lett. 1996 Aug 1;21(15):1099-101. doi: 10.1364/ol.21.001099.
3
Optical detection of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33(5):485-99. doi: 10.1109/t-uffc.1986.26860.
4
Principles and applications of ultrasound backscatter microscopy.
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(5):608-17. doi: 10.1109/58.238115.
5
Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(6):1575-82. doi: 10.1109/58.808883.
6
High frequency ultrasound imaging using an active optical detector.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):719-27. doi: 10.1109/58.677616.
7
High-density flexible interconnect for two-dimensional ultrasound arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):764-70. doi: 10.1109/58.842067.
9
High frequency optoacoustic arrays using etalon detection.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(1):160-9. doi: 10.1109/58.818758.
10
Improvements in optical generation of high-frequency ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):682-6. doi: 10.1109/tuffc.2007.292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验