Hou Yang, Kim Jin-Sung, Huang Sheng-Wen, Ashkenazi S, Guo L J, O'Donnell M
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Aug;55(8):1867-77. doi: 10.1109/TUFFC.2008.870.
A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high- frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 microm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 microm diameter transmit element combined with a 20 microm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device's optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging.
一种用于高频超声成像的宽带全光超声换能器已被设计、制造并进行了评估。该器件由印刻在玻璃基板顶部的二维金纳米结构组成,其后是一个3微米厚的聚二甲基硅氧烷(PDMS)层和一个30纳米厚的金层。在金纳米结构的共振波长处的激光脉冲聚焦到表面以产生超声波,而金纳米结构与30纳米厚的金层以及其间的PDMS层一起形成一个用于超声检测的标准具,该标准具使用远离共振波长的连续波激光作为探测光束。在换能器远场记录的脉冲回波信号的中心频率为40兆赫兹,-6分贝带宽为57兆赫兹。来自一个直径70微米的发射元件与一个直径20微米的接收元件组合,探测位于距换能器表面1.5毫米处的近乎完美反射体时的信噪比(SNR)大于10分贝,并且有潜力至少再提高40分贝。在对成像目标进行机械扫描时,利用来自该换能器的多次测量模拟了一个高频超声阵列。对该器件光学和声学特性的表征以及初步成像结果有力地表明,全光超声换能器可用于构建用于实时高分辨率超声成像的高频阵列。