Suppr超能文献

具有多谐振超薄结构的用于机器学习生物识别的仿生柔性压电移动声学传感器。

Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics.

作者信息

Wang Hee Seung, Hong Seong Kwang, Han Jae Hyun, Jung Young Hoon, Jeong Hyun Kyu, Im Tae Hong, Jeong Chang Kyu, Lee Bo-Yeon, Kim Gwangsu, Yoo Chang D, Lee Keon Jae

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

出版信息

Sci Adv. 2021 Feb 12;7(7). doi: 10.1126/sciadv.abe5683. Print 2021 Feb.

Abstract

Flexible resonant acoustic sensors have attracted substantial attention as an essential component for intuitive human-machine interaction (HMI) in the future voice user interface (VUI). Several researches have been reported by mimicking the basilar membrane but still have dimensional drawback due to limitation of controlling a multifrequency band and broadening resonant spectrum for full-cover phonetic frequencies. Here, highly sensitive piezoelectric mobile acoustic sensor (PMAS) is demonstrated by exploiting an ultrathin membrane for biomimetic frequency band control. Simulation results prove that resonant bandwidth of a piezoelectric film can be broadened by adopting a lead-zirconate-titanate (PZT) membrane on the ultrathin polymer to cover the entire voice spectrum. Machine learning-based biometric authentication is demonstrated by the integrated acoustic sensor module with an algorithm processor and customized Android app. Last, exceptional error rate reduction in speaker identification is achieved by a PMAS module with a small amount of training data, compared to a conventional microelectromechanical system microphone.

摘要

柔性共振声学传感器作为未来语音用户界面(VUI)中直观人机交互(HMI)的关键组件,已引起了广泛关注。已有多项研究通过模仿基底膜进行报道,但由于在控制多频段和拓宽共振频谱以覆盖全语音频率方面存在局限性,仍存在尺寸缺陷。在此,通过利用超薄膜进行仿生频带控制,展示了高灵敏度压电移动声学传感器(PMAS)。仿真结果证明,通过在超薄聚合物上采用锆钛酸铅(PZT)膜,可以拓宽压电薄膜的共振带宽,以覆盖整个语音频谱。集成声学传感器模块与算法处理器和定制安卓应用,展示了基于机器学习的生物特征认证。最后,与传统微机电系统麦克风相比,通过使用少量训练数据的PMAS模块,在说话人识别中实现了显著的错误率降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239f/7880591/63f180fac81e/abe5683-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验