Eteshola Edward, Keener Matthew T, Elias Mark, Shapiro John, Brillson Leonard J, Bhushan Bharat, Lee Stephen Craig
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
J R Soc Interface. 2008 Jan 6;5(18):123-7. doi: 10.1098/rsif.2007.1107.
The attachment and interactions of analyte receptor biomolecules at solid-liquid interfaces are critical to development of hybrid biological-synthetic sensor devices across all size regimes. We use protein engineering approaches to engineer the sensing interface of biochemically modified field effect transistor sensors (BioFET). To date, we have deposited analyte receptor proteins on FET sensing channels by direct adsorption, used self-assembled monolayers to tether receptor proteins to planar FET SiO2 sensing gates and demonstrated interface biochemical function and electrical function of the corresponding sensors. We have also used phage display to identify short peptides that recognize thermally grown SiO2. Our interest in these peptides is as affinity domains that can be inserted as translational fusions into receptor proteins (antibody fragments or other molecules) to drive oriented interaction with FET sensing surfaces. We have also identified single-chain fragment variables (scFvs, antibody fragments) that recognize an analyte of interest as potential sensor receptors. In addition, we have developed a protein engineering technology (scanning circular permutagenesis) that allows us to alter protein topography to manipulate the position of functional domains of the protein relative to the BioFET sensing surface.
在所有尺寸范围内,分析物受体生物分子在固液界面的附着和相互作用对于生物合成混合传感器设备的开发至关重要。我们采用蛋白质工程方法来设计生物化学修饰的场效应晶体管传感器(BioFET)的传感界面。迄今为止,我们已通过直接吸附将分析物受体蛋白沉积在FET传感通道上,利用自组装单分子层将受体蛋白连接到平面FET SiO₂传感栅极,并展示了相应传感器的界面生化功能和电功能。我们还利用噬菌体展示来鉴定识别热生长SiO₂的短肽。我们对这些肽感兴趣的是其作为亲和结构域,可作为翻译融合插入受体蛋白(抗体片段或其他分子)中,以驱动与FET传感表面的定向相互作用。我们还鉴定了识别感兴趣分析物的单链可变片段(scFv,抗体片段)作为潜在的传感器受体。此外,我们开发了一种蛋白质工程技术(扫描环状诱变),使我们能够改变蛋白质拓扑结构,以操纵蛋白质功能域相对于BioFET传感表面的位置。