Foster Mark A, Salem Reza, Geraghty David F, Turner-Foster Amy C, Lipson Michal, Gaeta Alexander L
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
Nature. 2008 Nov 6;456(7218):81-4. doi: 10.1038/nature07430.
With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.
随着更快的电信数据速率的实现以及对超快化学和物理现象的兴趣不断增加,开发能够以亚皮秒分辨率进行简单光波形测量的技术变得至关重要。配备高速光电探测器的最先进示波器可提供30皮秒分辨率的单次波形测量。尽管多次采样技术可以实现几皮秒的分辨率,但单次测量对于分析随时间快速变化、异步或可能仅发生一次的事件是必要的。由于微电子带宽限制,进一步提高单次分辨率具有挑战性。为了克服这些限制,研究人员将目光投向了全光技术,因为光子学具有很大的处理带宽。这引发了对在标准电子平台上集成光子学的极大兴趣,催生了硅光子学领域,并有望实现下一代计算机处理单元以及高带宽通信的进步。对于硅光子学在这些领域的成功而言,用于光学性能监测的片上光信号处理将被证明至关重要。除了下一代通信之外,硅兼容的超快计量学对许多基础研究领域将具有很大的实用性,超快测量技术持续产生的科学影响就证明了这一点。在这里,我们通过硅芯片上的四波混频非线性过程进行时间到频率的转换,展示了一种硅光子平台内的波形测量技术。我们在长度大于100皮秒的范围内以220飞秒分辨率测量光波形,这代表了任何具有单次测量能力的皮秒波形测量技术中最大的记录长度与分辨率之比(>450)。我们的实现方式允许单次测量,并且仅使用高度发达的互补金属氧化物半导体(CMOS)兼容的绝缘体上硅技术和单模光纤的电子和光学材料。成熟的绝缘体上硅平台以及将电子学与这些CMOS兼容光子学集成的能力为将该技术扩展到普通台式和芯片规模仪器提供了巨大希望。