Suppr超能文献

将光子学与硅纳米电子学集成,用于下一代片上系统。

Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

机构信息

Massachusetts Institute of Technology, Cambridge, MA, USA.

University of California, Berkeley, Berkeley, CA, USA.

出版信息

Nature. 2018 Apr;556(7701):349-354. doi: 10.1038/s41586-018-0028-z. Epub 2018 Apr 18.

Abstract

Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions. This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing. By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions , but with the performance, complexity and scalability of 'systems on a chip'. As transistors smaller than ten nanometres across become commercially available , and as new nanotechnologies emerge, this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

摘要

电子和光子技术已经改变了我们的生活——从计算和移动设备,到信息技术和互联网。我们在这些领域的未来需求不仅要求每种技术单独进行创新,还依赖于我们通过集成解决方案利用它们互补物理的能力。这一目标受到了以下事实的阻碍:大多数使我们的处理器、计算机内存、通信芯片和图像传感器成为可能的硅纳米技术依赖于体硅衬底,这是一种具有成本效益的解决方案,供应链丰富,但对于光子功能的集成存在很大的限制。在这里,我们使用沉积在与晶体管一起制造的氧化硅(玻璃)岛上的多晶硅层,将光子技术引入体硅互补金属氧化物半导体(CMOS)芯片中。我们使用这单个沉积层来实现光波导和谐振器、高速光调制器和灵敏的雪崩光电探测器。我们将这个光子平台与一个 65 纳米晶体管体 CMOS 工艺技术集成在一个 300 毫米直径的晶圆微电子制造厂内。然后,我们在这个平台上实现了集成的高速光收发器,其工作速度为 10 吉比特每秒,由数百万个晶体管组成,并在单个光总线上排列,用于波分复用,以满足数据中心和高性能计算对高带宽光互连的需求。通过将光子器件的形成与晶体管的形成解耦,这种集成方法可以实现多芯片解决方案的许多目标,但具有“片上系统”的性能、复杂性和可扩展性。随着小于 10 纳米的晶体管在商业上变得可用,并且随着新的纳米技术的出现,这种方法可以为光子技术与最先进的纳米电子技术的集成提供一种途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验