Suppr超能文献

二期单心室重建的血流动力学表现:格林手术与半Fontan手术模板对比

Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. hemi-Fontan templates.

作者信息

Pekkan Kerem, Dasi Lakshimi P, de Zélicourt Diane, Sundareswaran Kartik S, Fogel Mark A, Kanter Kirk R, Yoganathan Ajit P

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Ann Biomed Eng. 2009 Jan;37(1):50-63. doi: 10.1007/s10439-008-9591-z. Epub 2008 Nov 6.

Abstract

Flow structures, hemodynamics and the hydrodynamic surgical pathway resistances of the final stage functional single ventricle reconstruction, namely the total cavopulmonary connection (TCPC) anatomy, have been investigated extensively. However, the second stage surgical anatomy (i.e., bi-directional Glenn or hemi-Fontan template) has received little attention. We thus initiated a multi-faceted study, involving magnetic resonance imaging (MRI), phase contrast MRI, computational and experimental fluid dynamics methodologies, focused on the second stage of the procedure. Twenty three-dimensional computer and rapid prototype models of 2nd stage TCPC anatomies were created, including idealized parametric geometries (n = 6), patient-specific anatomies (n = 7), and their virtual surgery variant (n = 7). Results in patient-specific and idealized models showed that the Glenn connection template is hemodynamically more efficient with (83% p = 0.08 in patient-specific models and 66% in idealized models) lower power losses compared to hemi-Fontan template, respectively, due to its direct end-to-side anastomosis. Among the several secondary surgical geometrical features, stenosis at the SVC anastomosis or in pulmonary branches was found to be the most critical parameter in increasing the power loss. The pouch size and flare shape were found to be less significant. Compared to the third stage surgery the hydrodynamic resistance of the 2nd stage is considerably lower (both in idealized models and in anatomical models at MRI resting conditions) for both hemi- and Glenn templates. These results can impact the surgical design and planning of the staged TCPC reconstruction.

摘要

终末期功能性单心室重建(即全腔静脉肺动脉连接术,TCPC)的血流结构、血流动力学及流体动力手术路径阻力已得到广泛研究。然而,二期手术解剖结构(即双向格林或半Fontan模板)却很少受到关注。因此,我们启动了一项多方面的研究,涉及磁共振成像(MRI)、相位对比MRI、计算流体动力学和实验流体动力学方法,重点关注该手术的第二阶段。创建了23个二维计算机模型和快速原型模型,用于模拟二期TCPC解剖结构,包括理想化参数几何模型(n = 6)、患者特异性解剖模型(n = 7)及其虚拟手术变体模型(n = 7)。患者特异性模型和理想化模型的结果显示,由于格林连接模板采用直接端侧吻合,其血流动力学效率更高(患者特异性模型中为83%,p = 0.08;理想化模型中为66%),与半Fontan模板相比,功率损失更低。在几个次要手术几何特征中,上腔静脉吻合处或肺分支处的狭窄被发现是增加功率损失的最关键参数。袋状大小和喇叭形状的影响较小。与三期手术相比,半Fontan模板和格林模板在二期手术时的流体动力阻力(在MRI静息状态下的理想化模型和解剖模型中)均显著更低。这些结果可能会影响分期TCPC重建的手术设计和规划。

相似文献

1
Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. hemi-Fontan templates.
Ann Biomed Eng. 2009 Jan;37(1):50-63. doi: 10.1007/s10439-008-9591-z. Epub 2008 Nov 6.
3
Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases.
J Biomech. 2013 Jan 18;46(2):423-9. doi: 10.1016/j.jbiomech.2012.10.023. Epub 2012 Nov 20.
4
Multiscale Modeling of Superior Cavopulmonary Circulation: Hemi-Fontan and Bidirectional Glenn Are Equivalent.
Semin Thorac Cardiovasc Surg. 2020;32(4):883-892. doi: 10.1053/j.semtcvs.2019.09.007. Epub 2019 Sep 11.
5
Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection.
Ann Thorac Surg. 2016 Jan;101(1):183-9. doi: 10.1016/j.athoracsur.2015.07.012. Epub 2015 Oct 1.
6
Hemi-Fontan and bidirectional Glenn operations result in flow-mediated viscous energy loss at the time of stage II palliation.
JTCVS Open. 2023 Sep 30;16:836-843. doi: 10.1016/j.xjon.2023.09.030. eCollection 2023 Dec.
7
8
Toward optimal hemodynamics: computer modeling of the Fontan circuit.
Pediatr Cardiol. 2007 Nov-Dec;28(6):477-81. doi: 10.1007/s00246-007-9009-y.
9
Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis.
J Thorac Cardiovasc Surg. 2014 Oct;148(4):1481-9. doi: 10.1016/j.jtcvs.2013.11.060. Epub 2013 Dec 31.

引用本文的文献

1
Fontan Surgical Planning: Numerical Simulations Reveal Efficient Geometries Predicting Post-Surgical Outcomes.
Braz J Cardiovasc Surg. 2025 Mar 18;40(2):e20240217. doi: 10.21470/1678-9741-2024-0217.
2
Hemi-Fontan and bidirectional Glenn operations result in flow-mediated viscous energy loss at the time of stage II palliation.
JTCVS Open. 2023 Sep 30;16:836-843. doi: 10.1016/j.xjon.2023.09.030. eCollection 2023 Dec.
3
In-Silico and In-Vitro Analysis of the Novel Hybrid Comprehensive Stage II Operation for Single Ventricle Circulation.
Bioengineering (Basel). 2023 Jan 19;10(2):135. doi: 10.3390/bioengineering10020135.
4
A computational study of aortic reconstruction in single ventricle patients.
Biomech Model Mechanobiol. 2023 Feb;22(1):357-377. doi: 10.1007/s10237-022-01650-w. Epub 2022 Nov 5.
5
Imaging of Fontan-associated liver disease.
Pediatr Radiol. 2020 Oct;50(11):1528-1541. doi: 10.1007/s00247-020-04776-0. Epub 2020 Aug 18.
6
Numerical Simulation of Hemodynamics in Two Models for Total Anomalous Pulmonary Venous Connection Surgery.
Front Physiol. 2020 Mar 10;11:206. doi: 10.3389/fphys.2020.00206. eCollection 2020.
7
Computational Pre-surgical Planning of Arterial Patch Reconstruction: Parametric Limits and In Vitro Validation.
Ann Biomed Eng. 2018 Sep;46(9):1292-1308. doi: 10.1007/s10439-018-2043-5. Epub 2018 May 14.
9
Tetralogy of Fallot Surgical Repair: Shunt Configurations, Ductus Arteriosus and the Circle of Willis.
Cardiovasc Eng Technol. 2017 Jun;8(2):107-119. doi: 10.1007/s13239-017-0302-5. Epub 2017 Apr 5.
10
Three-dimensional Printing in Developing Countries.
Plast Reconstr Surg Glob Open. 2015 Aug 10;3(7):e443. doi: 10.1097/GOX.0000000000000298. eCollection 2015 Jul.

本文引用的文献

1
The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise.
Am J Physiol Heart Circ Physiol. 2008 Dec;295(6):H2427-35. doi: 10.1152/ajpheart.00628.2008. Epub 2008 Oct 17.
3
Functional analysis of Fontan energy dissipation.
J Biomech. 2008 Jul 19;41(10):2246-52. doi: 10.1016/j.jbiomech.2008.04.011. Epub 2008 May 27.
4
A new method for registration-based medical image interpolation.
IEEE Trans Med Imaging. 2008 Mar;27(3):370-7. doi: 10.1109/TMI.2007.907324.
5
Anatomically realistic patient-specific surgical planning of complex congenital heart defects using MRI and CFD.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:202-5. doi: 10.1109/IEMBS.2007.4352258.
6
Modeling the Fontan circulation: where we are and where we need to go.
Pediatr Cardiol. 2008 Jan;29(1):3-12. doi: 10.1007/s00246-007-9104-0. Epub 2007 Oct 5.
7
Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics.
Circulation. 2007 Sep 11;116(11 Suppl):I165-71. doi: 10.1161/CIRCULATIONAHA.106.680827.
8
The lateral tunnel Fontan procedure for hypoplastic left heart syndrome: results of 100 consecutive patients.
Pediatr Cardiol. 2007 Nov-Dec;28(6):426-32. doi: 10.1007/s00246-007-9002-5.
9
Surgical simulation--a new tool to evaluate surgical incisions in congenital heart disease?
Interact Cardiovasc Thorac Surg. 2006 Oct;5(5):536-9. doi: 10.1510/icvts.2006.132316. Epub 2006 Jun 29.
10
Comparison of lateral tunnel and extracardiac conduit Fontan procedure.
Interact Cardiovasc Thorac Surg. 2007 Jun;6(3):328-30. doi: 10.1510/icvts.2006.146928. Epub 2007 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验