Pekkan Kerem, Whited Brian, Kanter Kirk, Sharma Shiva, de Zelicourt Diane, Sundareswaran Kartik, Frakes David, Rossignac Jarek, Yoganathan Ajit P
Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Med Biol Eng Comput. 2008 Nov;46(11):1139-52. doi: 10.1007/s11517-008-0377-0. Epub 2008 Aug 5.
The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.
本文介绍了首个针对解剖复杂性和患者特异性计算流体动力学(CFD)分析的解剖编辑/手术规划工具(SURGEM)。该工具集成了新颖的三维(3D)形状编辑概念和人体形状交互技术,以促进交互式手术形态改变、网格生成和CFD分析。为了在先天性心脏病患者的手术规划阶段实现“手动血流动力学优化”,这些工具被应用于设计和评估患者特异性解剖结构的可能修改。在此背景下,解剖结构涉及复杂的几何拓扑和具有多个入口和出口的曲折三维血流路径。这些工具使得通过双手实时直接操作三维模型来自由变形管腔表面、弯曲和定位挡板成为可能,从而省去了使用传统计算机辅助设计(CAD)系统输入所需几何形状的繁琐且耗时的阶段。修改后的解剖结构的三维模型被无缝导出并网格化,用于患者特异性CFD分析。使用基于内部骨骼化的横截面几何分析工具对自由形成的解剖修改进行量化。使用CFD将系统修改后的解剖结构的血流动力学性能与原始解剖结构进行比较。CFD结果显示了各种手术创建特征的相对重要性,如袋状大小、腔静脉到肺动脉(PA)扩张和PA狭窄。还引入了交互式手术补片大小估计器。组合的设计/分析周期时间用于比较和优化手术计划,并将改进结果列表。患者特异性形状设计和分析过程成本的降低,使得设想进行大型临床研究以评估预测性患者特异性CFD模拟的有效性成为可能。本文对总共八种不同的复杂患者特异性解剖结构进行了模型解剖设计研究。使用SURGEM创建了30多个新的解剖设计(或候选配置),并给出了相应的用户时间。还展示了其中八种候选配置的CFD性能。