Suppr超能文献

A novel macroencapsulating immunoisolatory device: the preparation and properties of nanomat-reinforced amphiphilic co-networks deposited on perforated metal scaffold.

作者信息

Erdodi Gabor, Kang Jungmee, Yalcin Baris, Cakmak Mukerrem, Rosenthal Kenneth S, Grundfest-Broniatowski Sharon, Kennedy Joseph P

机构信息

Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.

出版信息

Biomed Microdevices. 2009 Feb;11(1):297-312. doi: 10.1007/s10544-008-9236-x.

Abstract

This paper describes the design and preparation of the non-biological components (the "hardware") of a conceptually novel bioartificial pancreas (BAP) to correct diabetes. The key components of the hardware are (1) a thin (5-10 microm) semipermeable amphiphilic co-network (APCN) membrane [i.e., a membrane of cocontinuous poly(dimethyl acryl amide) (PDMAAm)/polydimethylsiloxane (PDMS) domains cross-linked by polymethylhydrosiloxane (PMHS)] expressly created for macroencapsulation and immunoisolation of a tissue graft; (2) an electrospun nanomat of PDMS-containing polyurethane to reinforce the water-swollen APCN membrane; and (3) a perforated hollow-ribbon nitinol scaffold to stiffen and provide geometric stability to the construct. The reinforcement of water-swollen hydrogels with an electrospun nanomat is a generally applicable new method for hydrogel reinforcement. Details of device design and preparation are discussed. The advantages and disadvantages of micro- and macro-immunoisolation are analyzed, and the requirements for the ideal immunoisolatory membrane are presented. Burst pressure, and glucose and insulin permeabilities of representative devices have been determined and the effect of device composition and wall thickness on these properties is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验