Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
Adv Drug Deliv Rev. 2019 Jan 15;139:116-138. doi: 10.1016/j.addr.2019.01.013. Epub 2019 Feb 2.
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
胰岛移植是一种有前途的长期、无需依从性、可预防并发症的 1 型糖尿病治疗方法。然而,由于供体胰岛短缺和免疫抑制的副作用,胰岛移植目前仅限于一小部分患者。将细胞包封在免疫隔离膜中,可以在无需免疫抑制的情况下进行移植。或者,“开放”系统可以通过允许血管在临床上有吸引力的部位生长,来改善胰岛的健康和功能。这两种方法中,许多使移植物成功的过程都发生在纳米级水平——因此,在本综述中,我们考虑了纳米技术在 1 型糖尿病细胞替代治疗中的应用。已经出现了各种基于生物材料的纳米级策略,以促进免疫隔离或调节、促血管生成或胰岛素分泌作用。此外,用纳米级聚合物薄膜涂覆胰岛已成为胰岛保护的一种方式。利用纳米级特征的材料方法在分子水平上操纵生物学,为胰岛移植面临的持久挑战提供了独特的解决方案。