Suppr超能文献

自上而下/自下而上相结合的分割

Combined top-down/bottom-up segmentation.

作者信息

Borenstein Eran, Ullman Shimon

机构信息

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2109-25. doi: 10.1109/TPAMI.2007.70840.

Abstract

We construct a segmentation scheme that combines top-down with bottom-up processing. In the proposed scheme, segmentation and recognition are intertwined rather than proceeding in a serial manner. The top-down part applies stored knowledge about object shapes acquired through learning, whereas the bottom-up part creates a hierarchy of segmented regions based on uniformity criteria. Beginning with unsegmented training examples of class and non-class images, the algorithm constructs a bank of class-specific fragments and determines their figure-ground segmentation. This bank is then used to segment novel images in a top-down manner: the fragments are first used to recognize images containing class objects, and then to create a complete cover that best approximates these objects. The resulting segmentation is then integrated with bottom-up multi-scale grouping to better delineate the object boundaries. Our experiments, applied to a large set of four classes (horses, pedestrians, cars, faces), demonstrate segmentation results that surpass those achieved by previous top-down or bottom-up schemes. The main novel aspects of this work are the fragment learning phase, which efficiently learns the figure-ground labeling of segmentation fragments, even in training sets with high object and background variability; combining the top-down segmentation with bottom-up criteria to draw on their relative merits; and the use of segmentation to improve recognition.

摘要

我们构建了一种将自上而下与自下而上处理相结合的分割方案。在所提出的方案中,分割和识别相互交织,而不是以串行方式进行。自上而下的部分应用通过学习获得的关于物体形状的存储知识,而自下而上的部分则基于均匀性标准创建分割区域的层次结构。从类别图像和非类别图像的未分割训练示例开始,该算法构建一组特定类别的片段,并确定它们的前景-背景分割。然后,这组片段被用于以自上而下的方式分割新图像:片段首先用于识别包含类别物体的图像,然后创建一个最能近似这些物体的完整覆盖。随后,将得到的分割结果与自下而上的多尺度分组相结合,以更好地描绘物体边界。我们应用于大量四类(马、行人、汽车、面部)的实验表明,分割结果超过了以前的自上而下或自下而上方案所取得的结果。这项工作的主要新颖之处在于片段学习阶段,即使在物体和背景变化很大的训练集中,该阶段也能有效地学习分割片段的前景-背景标注;将自上而下的分割与自下而上的标准相结合,以利用它们的相对优点;以及利用分割来提高识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验