Suppr超能文献

注视点分布分析及在各年龄组中的显著度预测

Gaze distribution analysis and saliency prediction across age groups.

机构信息

Dept. of Information and Communication Engineering, The University of Tokyo, Tokyo, Japan.

Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France.

出版信息

PLoS One. 2018 Feb 23;13(2):e0193149. doi: 10.1371/journal.pone.0193149. eCollection 2018.

Abstract

Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to develop a computational model that can predict saliency across different age groups. Our analysis uncovers how the explorativeness of an observer varies with age, how well saliency maps of an age group agree with fixation points of observers from the same or different age groups, and how age influences the center bias tendency. We analyzed the eye movement behavior of 82 observers belonging to four age groups while they explored visual scenes. Explorative- ness was quantified in terms of the entropy of a saliency map, and area under the curve (AUC) metrics was used to quantify the agreement analysis and the center bias tendency. Analysis results were used to develop age adapted saliency models. Our results suggest that the proposed age-adapted saliency model outperforms existing saliency models in predicting the regions of interest across age groups.

摘要

了解人类视觉系统有助于开发更好的视觉注意计算模型。现有的模型已经被开发出来,以模拟年轻人的视觉注意系统,但它们在很大程度上忽略了随着年龄的变化。在本文中,我们研究了视觉场景处理如何随年龄变化,并提出了一个年龄适应框架,帮助开发能够预测不同年龄组显著性的计算模型。我们的分析揭示了观察者的探索性如何随年龄变化,一个年龄组的显著图与来自同一或不同年龄组的观察者的注视点有多吻合,以及年龄如何影响中心偏差趋势。我们分析了 82 名观察者在探索视觉场景时的眼动行为,这些观察者属于四个年龄组。探索性用显著图的熵来量化,曲线下面积(AUC)指标用于量化一致性分析和中心偏差趋势。分析结果被用来开发年龄适应的显著性模型。我们的结果表明,所提出的年龄适应显著性模型在预测跨年龄组的兴趣区域方面优于现有的显著性模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe9/5825055/99fd79073cf3/pone.0193149.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验